(load "util.scm") (define (integral integrand initial-value dt) (define int (cons-stream initial-value (add-streams (scale-stream integrand dt) int))) int) (display "\nex-3.73 - RC\n") (define (RC R C dt) (define (rc-proc i v0) (add-streams (scale-stream i R) (integral (scale-stream i (/ 1 C)) v0 dt))) rc-proc) (define RC1 (RC 5 1 0.5)) (assert (take 5 (RC1 ones 4.2)) '(9.2 9.7 10.2 10.7 11.2)) (display "\nex-3.74 - zero-crossings\n") (define sense-data (list->stream '(1 2 1.5 1 0.5 -0.1 -2 -3 -2 -0.5 0.2 3 4))) (define response '(0 0 0 0 0 -1 0 0 0 0 1 0)) (define (sign-change-detector s2 s1) (cond ((and (< s1 0) (>= s2 0)) 1) ((and (>= s1 0) (< s2 0)) -1) (else 0))) (define (make-zero-crossings input-stream last-value) (cons-stream (sign-change-detector (stream-car input-stream) last-value) (make-zero-crossings (stream-cdr input-stream) (stream-car input-stream)))) (define zero-crossings (make-zero-crossings sense-data 0)) (assert (take 12 zero-crossings) response) (define zero-crossings (stream-map sign-change-detector sense-data (cons-stream 0 sense-data))) (assert (take 12 zero-crossings) response) (display "\nex-3.75 - averaged zero-crossings\n") ; Louis' solution uses the average value as last-value which means that the new ; value and the previous average are used for averaging and not simply two ; consecutive values as proposed by Alyssa. (define (make-zero-crossings-avg input-stream last-value last-avpt) (let ((avpt (/ (+ (stream-car input-stream) last-value) 2))) (cons-stream (sign-change-detector avpt last-avpt) (make-zero-crossings-avg (stream-cdr input-stream) (stream-car input-stream) avpt)))) (display (take 12 (make-zero-crossings-avg sense-data 0 0))) (newline) (display "\nex-3.76 - smooth zero-crossings\n") (define (smooth xs) (stream-map average xs (stream-cdr xs))) (define (make-zero-crossings-smoothed input-stream last-value) (make-zero-crossings (smooth input-stream) last-value)) (assert (take 11 (make-zero-crossings-smoothed sense-data 0)) '(0 0 0 0 0 -1 0 0 0 0 1)) (display "\nex-3.77 - lazy-integral\n") (define (integral delayed-integrand initial-value dt) (define int (cons-stream initial-value (let ((integrand (force delayed-integrand))) (add-streams (scale-stream integrand dt) int)))) int) (define (solve f y0 dt) (define y (integral (delay dy) y0 dt)) (define dy (stream-map f y)) y) (assert (stream-ref (solve (lambda (y) y) 1 0.001) 1000) 2.716923932235896) (define (integral delayed-integrand initial-value dt) (cons-stream initial-value (let ((integrand (force delayed-integrand))) (if (stream-null? integrand) the-empty-stream (integral (delay (stream-cdr integrand)) (+ (* dt (stream-car integrand)) initial-value) dt))))) (assert (stream-ref (solve (lambda (y) y) 1 0.001) 1000) 2.716923932235896) (display "\nex-3.78 - solve-2nd\n") ; The output stream, modeling y, is generated by a network that contains a loop. ; This is because the value of d2y/dt2 depends upon the values of y and dy/dt and ; both of these are determined by integrating d2y/dt2. The diagram we would like ; to encode is shown in figure 3.35. Write a procedure solve-2nd that takes as ; arguments the constants a, b, and dt and the initial values y0 and dy0 for y ; and dy/dt and generates the stream of successive values of y. (define (solve-2nd a b dt y0 dy0) (define y (integral (delay dy) y0 dt)) (define dy (integral (delay ddy) dy0 dt)) (define ddy (add-streams (scale-stream dy a) (scale-stream y b))) y) (assert (stream-ref (solve-2nd 1 0 0.0001 1 1) 10000) 2.7181459268252266) ; e (assert (stream-ref (solve-2nd 0 -1 0.0001 1 0) 10472) 0.5000240628699462) ; cos pi/3 = 0.5 (assert (stream-ref (solve-2nd 0 -1 0.0001 0 1) 5236) 0.5000141490501059) ; sin pi/6 = 0.5 (display "\nex-3.79 - solve-2nd-general\n") (define (solve-2nd-general a b) '()) ;(display "\nex-3.80\n") ;(display "\nex-3.81\n") ;(display "\nex-3.82\n")