;;; from http://www.shido.info/lisp/scheme_amb_e.html ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Nondeterminsm using macro amb ;;; T.Shido ;;; November 15, 2005 ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; abbreviation for call-with-current-continuation (define call/cc call-with-current-continuation) ;;; This function is re-assigned in `choose' and `fail' itself. (define fail #f) ;;; nondeterminsm macro operator (define-syntax amb (syntax-rules () ((_) (fail)) ((_ a) a) ((_ a b ...) (let ((fail0 fail)) (call/cc (lambda (cc) (set! fail (lambda () (set! fail fail0) (cc (amb b ...)))) (cc a))))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; for MIT-Scheme only ; use it if you don't like warning during compilation ; (define-syntax amb ; (sc-macro-transformer ; (lambda (exp env) ; (if (null? (cdr exp)) ; `(fail) ; `(let ((fail0 fail)) ; (call/cc ; (lambda (cc) ; (set! fail ; (lambda () ; (set! fail fail0) ; (cc (amb ,@(map (lambda (x) ; (make-syntactic-closure env '() x)) ; (cddr exp)))))) ; (cc ,(make-syntactic-closure env '() (second exp)))))))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; function for nondeterminsm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; (define (choose . ls) ; (if (null? ls) ; (fail) ; (let ((fail0 fail)) ; (call/cc ; (lambda (cc) ; (begin ; (set! fail ; (lambda () ; (set! fail fail0) ; (cc (apply choose (cdr ls))))) ; (cc (car ls)))))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; returning all possibilities (define-syntax set-of (syntax-rules () ((_ s) (let ((acc '())) (amb (let ((v s)) (set! acc (cons v acc)) (fail)) (reverse! acc)))))) ;;; if not pred backtrack (define (assert pred) (or pred (amb))) ;;; returns arbitrary number larger or equal to n (define (an-integer-starting-from n) (amb n (an-integer-starting-from (1+ n)))) ;;; returns arbitrary number between a and b (define (number-between a b) (let loop ((i a)) (if (> i b) (amb) (amb i (loop (1+ i)))))) ;;;;;;;;;;;; misc (define (gen-prime n) (let ((i (number-between 2 n))) (assert (prime? i)) i)) (define (prime? n) (let ((m (sqrt n))) (let loop ((i 2)) (or (< m i) (and (not (zero? (modulo n i))) (loop (+ i (if (= i 2) 1 2)))))))) (define (sum-prime n) (let* ((i (number-between 1 n)) (j (number-between i n))) (assert (prime? (+ i j))) (list i j))) (define (sq x) (* x x)) (define (pythag i j k) (assert (= (sq k) (+ (sq i) (sq j)))) (list i j k)) ;;; small functions for SICP Exercise 4.42 (define (xor a b) (if a (not b) b)) (define (all-different? . ls) (let loop ((obj (car ls)) (ls (cdr ls))) (or (null? ls) (and (not (memv obj ls)) (loop (car ls) (cdr ls)))))) ;;; SICP Exercise 4.42 (define (girls-exam) (let ((kitty (number-between 1 5)) (betty (number-between 1 5))) (assert (xor (= kitty 2) (= betty 3))) (let ((mary (number-between 1 5))) (assert (xor (= kitty 2) (= mary 4))) (assert (xor (= mary 4) (= betty 1))) (let ((ethel (number-between 1 5)) (joan (number-between 1 5))) (assert (xor (= ethel 1) (= joan 2))) (assert (xor (= joan 3) (= ethel 5))) (assert (all-different? kitty betty ethel joan mary)) (map list '(kitty betty ethel joan mary) (list kitty betty ethel joan mary)))))) ;;; Bad answer for ex 4.42 (define (girls-exam-x) (let ((kitty (number-between 1 5)) (betty (number-between 1 5)) (mary (number-between 1 5)) (ethel (number-between 1 5)) (joan (number-between 1 5))) (assert (xor (= kitty 2) (= betty 3))) (assert (xor (= kitty 2) (= mary 4))) (assert (xor (= mary 4) (= betty 1))) (assert (xor (= ethel 1) (= joan 2))) (assert (xor (= joan 3) (= ethel 5))) (assert (all-different? kitty betty ethel joan mary)) (map list '(kitty betty ethel joan mary) (list kitty betty ethel joan mary)))) ;;; to show cpu time (define-syntax cpu-time/sec (syntax-rules () ((_ s) (with-timings (lambda () s) (lambda (run-time gc-time real-time) (write (internal-time/ticks->seconds run-time)) (write-char #\space) (write (internal-time/ticks->seconds gc-time)) (write-char #\space) (write (internal-time/ticks->seconds real-time)) (newline)))))) ;;; initializing fail (call/cc (lambda (cc) (set! fail (lambda () (cc 'no-choise)))))