Implement till 2.83

This commit is contained in:
Felix Martin 2020-11-20 22:04:19 -05:00
parent b28c0a1e9f
commit bebccac4c2
2 changed files with 138 additions and 13 deletions

View File

@ -2,6 +2,26 @@
(display "\nexample - generic arithmetic operations\n")
; (define (display x) ())
; (define (newline) ())
; can be used to import stuff silently
; Put and get functions. We could have implemented this via a list of
; three-tuples, but I don't know how to create global variables yet so we just
; use this code from SO. Doesn't look too complicated.
; https://stackoverflow.com/questions/5499005/how-do-i-get-the-functions-put-and-get-in-sicp-scheme-exercise-2-78-and-on
(define *op-table* (make-hash-table))
(define (put op type proc)
(hash-table/put! *op-table* (list op type) proc))
(define (get op type)
(hash-table/get *op-table* (list op type) #f))
(define *coercion-table* (make-hash-table))
(define (put-coercion type1 type2 proc)
(hash-table/put! *coercion-table* (list type1 type2) proc))
(define (get-coercion type1 type2)
(hash-table/get *coercion-table* (list type1 type2) #f))
;; Helpers for generic arithmetic operations
(define (attach-tag type-tag contents)
(cond
@ -42,6 +62,8 @@
(lambda (x y) (tag (/ x y))))
(put 'equ? '(scheme-number scheme-number)
(lambda (x y) (= x y)))
(put 'exp '(scheme-number scheme-number)
(lambda (x y) (tag (expt x y)))) ; using primitive expt
(put '=zero? '(scheme-number)
(lambda (x) (= x 0)))
(put 'make 'scheme-number
@ -70,6 +92,8 @@
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
(define (add3-rat x y z)
(add-rat (add-rat x y) z))
(define (equ? x y)
(= (* (numer x) (denom y))
(* (numer y) (denom x))))
@ -77,6 +101,8 @@
(define (tag x) (attach-tag 'rational x))
(put 'add '(rational rational)
(lambda (x y) (tag (add-rat x y))))
(put 'add3 '(rational rational rational)
(lambda (x y z) (tag (add3-rat x y z))))
(put 'sub '(rational rational)
(lambda (x y) (tag (sub-rat x y))))
(put 'mul '(rational rational)
@ -209,11 +235,13 @@
;; generic operations
(define (add x y) (apply-generic 'add x y))
(define (add3 x y z) (apply-generic 'add3 x y z))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (equ? x y) (apply-generic 'equ? x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (exp x y) (apply-generic 'exp x y))
(install-scheme-number-package)
(install-rational-package)
@ -257,5 +285,97 @@
(assert (=zero? e1) #f)
(assert (=zero? p1) #f)
(newline) (display "ex-2.81") (newline)
(newline) (display "ex-2.81 - Louis trying things") (newline)
(define (scheme-number->complex n)
(make-complex-from-real-imag (contents n) 0))
(put-coercion 'scheme-number 'complex scheme-number->complex)
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(if (= (length args) 2)
(let ((type1 (car type-tags))
(type2 (cadr type-tags))
(a1 (car args))
(a2 (cadr args)))
(let ((t1->t2 (get-coercion type1 type2))
(t2->t1 (get-coercion type2 type1)))
(cond
((eq? type1 type2) (error "No need to coerce identical types"
(list op type-tags)))
(t1->t2 (apply-generic op (t1->t2 a1) a2))
(t2->t1 (apply-generic op a1 (t2->t1 a2)))
(else (error "No method for these types" (list op type-tags))))))
(error "No method for these types"
(list op type-tags)))))))
(display "[see comments]\n")
(assert (exp 3 3) 27)
(assert (add (make-scheme-number 3) (make-complex-from-real-imag 3 4))
(make-complex-from-real-imag 6 4))
; a. This is an endless loop. Louis change is not necessary, because if we
; coerce the arguments into the same type we would have found the respective
; procedure already.
; (define (scheme-number->scheme-number n) n)
; (define (complex->complex z) z)
; (put-coercion 'scheme-number 'scheme-number scheme-number->scheme-number)
; (put-coercion 'complex 'complex complex->complex)
; (exp (make-complex-from-real-imag 3 4) (make-complex-from-mag-ang 2 3))
; b. apply-generic already handles arguments of the same type correctly. It
; will simply not find a coercion procedure and return.
; c. added check for identical types to apply-generic. The following now just
; causes an error and no endless loop.
; (exp (make-complex-from-real-imag 3 4) (make-complex-from-mag-ang 2 3))
(newline) (display "ex-2.82 - multi argument coercion") (newline)
(define (scheme-number->rational n)
(make-rational (contents n) 1))
(put-coercion 'scheme-number 'rational scheme-number->rational)
; Try to coerce all args into target-type. Returns list if successful and empty
; list otherwise.
(define (coerce-args target-type args)
(define (coerce-arg arg)
(let ((t1->t2 (get-coercion (type-tag arg) target-type)))
(if (procedure? t1->t2) (t1->t2 arg) arg)))
(map coerce-arg args))
(define (apply-generic op . args)
(define (try-args args-list)
(if (null? args-list)
(error "No method for these types" (list op (map type-tag args)))
(let ((proc (get op (map type-tag (car args-list))))
(args-contents (map contents (car args-list))))
(if (procedure? proc)
(apply proc args-contents)
(try-args (cdr args-list))))))
(define (coerce-to-arg arg)
(coerce-args (type-tag arg) args))
(try-args (cons args (map coerce-to-arg args))))
(assert (add3 (make-rational 1 3) 2 (make-rational 3 9)) (make-rational 8 3))
; This approach does not work if there exist procedures for mixed types or if
; the coerced type that would work is different from any of the existing
; arguments' types.
(display (coerce-args 'rational (list (make-rational 1 3) 2 3))) (newline)
(newline) (display "ex-2.83") (newline)
(newline) (display "ex-2.84") (newline)
(newline) (display "ex-2.85 - we are back!") (newline)

View File

@ -35,16 +35,21 @@
nil
(cons low (enumerate-interval (+ low 1) high))))
; Put and get functions. We could have implemented this via a list of
; three-tuples, but I don't know how to create global variables yet so we just
; use this code from SO. Doesn't look too complicated.
; https://stackoverflow.com/questions/5499005/how-do-i-get-the-functions-put-and-get-in-sicp-scheme-exercise-2-78-and-on
(define *op-table* (make-hash-table))
(define (put op type proc)
(hash-table/put! *op-table* (list op type) proc))
(define (get op type)
(let ((e (hash-table/get *op-table* (list op type) #f)))
(if (eq? e #f)
(error "Unknown op type -- GET" (list op type))
e)))
; Returns #t if there is no #f in xs, otherwise returns #f.
(define (all? xs)
(cond ((null? xs) #t)
((eq? (car xs) #f) #f)
(else (all? (cdr xs)))))
(define (all-eq? xs)
(cond ((null? xs) #t)
((null? (cdr xs)) #t)
((eq? (car xs) (cadr xs)) (all-eq? (cdr xs)))
(else #f)))
(define (fold-right op initial sequence) ; same as accumulate
(if (null? sequence)
initial
(op (car sequence)
(fold-right op initial (cdr sequence)))))