2021-01-03 13:59:39 +01:00
|
|
|
(load "util.scm")
|
|
|
|
|
2021-01-05 15:44:02 +01:00
|
|
|
(define (pi-summands n)
|
|
|
|
(cons-stream (/ 1. n)
|
|
|
|
(stream-map - (pi-summands (+ n 2)))))
|
2021-01-03 13:59:39 +01:00
|
|
|
|
2021-01-05 15:44:02 +01:00
|
|
|
(define pi-stream
|
|
|
|
(scale-stream (partial-sums (pi-summands 1)) 4))
|
|
|
|
|
|
|
|
(define (euler-transform s)
|
|
|
|
(let ((s0 (stream-ref s 0)) ; Sn-1
|
|
|
|
(s1 (stream-ref s 1)) ; Sn
|
|
|
|
(s2 (stream-ref s 2))) ; Sn+1
|
|
|
|
(cons-stream (- s2 (/ (square (- s2 s1))
|
|
|
|
(+ s0 (* -2 s1) s2)))
|
|
|
|
(euler-transform (stream-cdr s)))))
|
|
|
|
|
|
|
|
(define (make-tableau transform s)
|
|
|
|
(cons-stream s
|
|
|
|
(make-tableau transform
|
|
|
|
(transform s))))
|
|
|
|
|
|
|
|
(define (accelerated-sequence transform s)
|
|
|
|
(stream-map stream-car
|
|
|
|
(make-tableau transform s)))
|
|
|
|
|
|
|
|
; (display (take 5 pi-stream))
|
|
|
|
; (newline)
|
|
|
|
; (display (take 5 (euler-transform pi-stream)))
|
|
|
|
; (newline)
|
|
|
|
; (display (take 5 (accelerated-sequence euler-transform pi-stream)))
|
|
|
|
; (newline)
|
|
|
|
|
|
|
|
(display "\nex-3.63 - sqrt-stream\n")
|
|
|
|
|
|
|
|
(define (sqrt-improve guess x)
|
|
|
|
(average guess (/ x guess)))
|
|
|
|
|
|
|
|
(define (sqrt-stream x)
|
|
|
|
(cons-stream 1.0
|
|
|
|
(stream-map (lambda (guess)
|
|
|
|
(sqrt-improve guess x))
|
|
|
|
(sqrt-stream x))))
|
|
|
|
|
|
|
|
(define (sqrt-stream x)
|
|
|
|
(define guesses
|
|
|
|
(cons-stream 1.0
|
|
|
|
(stream-map (lambda (guess)
|
|
|
|
(sqrt-improve guess x))
|
|
|
|
guesses)))
|
|
|
|
guesses)
|
|
|
|
|
|
|
|
(display (stream-ref (sqrt-stream 2) 1000))
|
|
|
|
(newline)
|
|
|
|
|
|
|
|
; The first implementation of sqrt-stream computes each value of the stream
|
|
|
|
; only once. Louis' suggestion computes all previous values because of the
|
|
|
|
; recursive calls to sqrt-stream. If memoization was not used the two solutions
|
|
|
|
; would behave in the same way.
|
|
|
|
|
|
|
|
(display "\nex-3.64 - stream-limit\n")
|
|
|
|
|
|
|
|
(define (stream-limit stream tolerance)
|
|
|
|
(if (< (abs (- (stream-car stream)
|
|
|
|
(stream-car (stream-cdr stream))))
|
|
|
|
tolerance)
|
|
|
|
(stream-car (stream-cdr stream))
|
|
|
|
(stream-limit (stream-cdr stream) tolerance)))
|
|
|
|
|
|
|
|
(define (sqrt-tol x tolerance)
|
|
|
|
(stream-limit (sqrt-stream x) tolerance))
|
|
|
|
|
|
|
|
(assert (< (abs (- 1.4142135623730951 (sqrt-tol 2 0.01)))
|
|
|
|
0.01) #t)
|
|
|
|
|
|
|
|
(assert (< (abs (- 4.795831523312719 (sqrt-tol 23 0.001)))
|
|
|
|
0.001) #t)
|
|
|
|
|
|
|
|
(display "\nex-3.65 - ln2\n")
|
|
|
|
|
|
|
|
(define (ln2-summands n)
|
|
|
|
(cons-stream (/ 1. n)
|
|
|
|
(stream-map - (ln2-summands (+ n 1)))))
|
|
|
|
|
|
|
|
(define ln2-stream
|
|
|
|
(partial-sums (ln2-summands 1)))
|
|
|
|
|
|
|
|
; slow
|
|
|
|
(define (ln2-tol tolerance)
|
|
|
|
(stream-limit ln2-stream tolerance))
|
|
|
|
|
|
|
|
; fast
|
|
|
|
(define (ln2-tol tolerance)
|
|
|
|
(stream-limit (accelerated-sequence euler-transform ln2-stream) tolerance))
|
|
|
|
|
|
|
|
(assert (ln2-tol 0.00000000001)
|
|
|
|
0.6931471805599445)
|
|
|
|
|
|
|
|
; The series converges slowly. Only with acceleration we get a good result in
|
|
|
|
; reasonable time.
|
|
|
|
|
|
|
|
(display "\nex-3.66\n")
|
|
|
|
|
|
|
|
; (display "\nex-3.67\n")
|