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Abstract

Embedded real-time multi-core systems must adhere to strict timing re-
quirements in order to guarantee correct execution. Timing requirements
are specified to document system execution paths that are safety critical
with respect to the timing behavior of an application.

Via tracing it is possible to validate the fulfillment of timing requirements
in the native environment of a microcontroller. However, trace tools produce
a trace on hardware or software level, whereas requirements are specified on
system level. A transformation of the former to the latter is required to
close this gap.

Additionally, not all trace techniques are capable of producing results
suitable for the real-time analysis of embedded applications. Most tech-
niques are not sufficient for one or several reasons: limited trace duration,
inadequate number of recordable objects, and limited timing accuracy.

Therefore, this thesis examines different trace techniques and shows why
hardware tracing is the most sufficient for real-time analysis. Next, the
coherence between hardware, software, and system level entities is exam-
ined. Based on the results a mapping from software level to system level is
introduced and validated.

The thesis concludes that it is possible to record cycle accurate sys-
tem traces of arbitrary length via hardware tracing. However, this requires
detailed knowledge about hardware tracing and the operating system un-
derlying an application.
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1 Introduction

Embedded applications are increasingly required to provide real-time per-
formance [21]. This means that the correct behavior of a system is not only
dependent on the logical results of a computation, but also on the physical
instant in which these are produced [28]. For hard real-time applications vi-
olation of a deadline will result in damage of the system or its environment
[58].

Due to the pervasive nature of embedded systems and their use for criti-
cal applications, e.g., medical devices or advanced driver assistance systems,
measures to ensure the correctness of time dependent functionality must be
taken [27]. Therefore, debugging and validation are a fundamental part of
the development process of such applications [10].

Different techniques to debug embedded systems exist [49]. The sim-
plest one is a classical printf statement in C (or the equivalent in another
language). More sophisticated debug technologies require on-chip debug
logic in the embedded processor. On-chip debug generally supports two
different types of functionality: run-control debug and real-time trace [10].

The former allows it to stop and examine the state of a system at points of
interest, so called breakpoints. This approach is intrusive, or in other words
changes the runtime behavior of an application. This is not acceptable for
time critical applications, e.g., engine control units that require continuous
execution of the processor in order to control feedback loops and to maintain
mechanical stability [10].

Real-time trace recording or tracing however, allows it to analyze and
debug a system without stopping the execution. It works by recording pro-
cessor events such as function calls and data accesses. The captured events
can be used to reconstruct and analyze the runtime behavior of an applica-
tion.

Since timing is an integral part in the development of safe and secure
real-time applications, timing dependencies should be included in the soft-
ware interface specifications [30]. One way to specify these dependencies are
timing requirements, e.g., the maximum response time for a certain task [9].
Via tracing system engineers are capable of validating those requirements
on target.

Timing-Architects Embedded Systems GmbH (TA) provides the TA Tool
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1.1. Motivation

Suite, a collection of tools for the system design, simulation, automated
optimization, and target verification of embedded real-time multi-core and
many-core systems [55]. These features work on the basis of system models.
Consequently, requirements are defined for system entities such as tasks,
runnables, signals, and semaphores.

On the contrary, trace recording produces events on software level. This
means a trace contains information about function entries and exits, and
data read and write accesses. As a consequence, the specified system re-
quirements cannot be evaluated.

However, by mapping software events to the corresponding system events
it is possible to transform a software to a system level trace. Best Trace
Format (BTF) is a trace format on system level and is used in this thesis
because of its native support for multi-core environments. To the best of my
knowledge, the possibility of a software to system mapping has only been
shown for a small subset of all entities specified by BTF.

In this thesis the feasibility of mapping all event actions contained in the
BTF standard is discussed, evaluated and validated. Furthermore, different
real-time trace techniques are discussed with respect to their versatility for
the timing analysis of embedded multi-core real-time applications.

1.1 Motivation

Transformation of software events to system events is required for the timing
analysis of embedded real-time systems as discussed in the previous section.
Moreover, system traces can also be used for different other use cases which
are covered in the following.

Simulation Validation

A simulation can be executed for a timing model by the TA Simulator. The
resulting simulated trace can be evaluated to validate the compliance of an
application with the specified requirements.

A simulated and a hardware based system trace will never be equal
by definition because a model is an abstraction of reality. Nevertheless,
simulation supports engineers in validating system behavior in early design
stages. It can abstract complex problems and analyze non-deterministic
system behavior [50].

However, a simulation is still a software which is vulnerable to bugs and
can potentially produce wrong results. A deviation to reality due to the
abstraction cannot be classified as a wrong result, on the other hand an
implementation error can be.

Via tracing it is possible to validate the correctness of simulated traces.
This is especially useful if a new simulation feature is implemented. In this
case a system trace recorded from hardware can provide valuable insights in
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1.2. Related Work

the actual behavior.

OS Overhead Measurement

Another aspect that is relevant for the development of embedded applica-
tions is the overhead caused by the operating system (OS) [63]. Overheads
are execution periods where the processor is not used by the actual applica-
tion but by the OS for example, context switches and inter-core communi-
cation mechanisms.

Especially for applications with a high processor utilization the addi-
tional overhead caused by the OS plays a critical role. Fulfillment of timing
requirements may be feasible or not depending on the overhead [20]. In order
to take this into consideration a good understanding of the execution times
required by OS routines is necessary. System traces recorded on hardware
allow it to determine the exact execution times for these overheads easily.

Model Reconstruction

The initial creation of a timing model for an existing application is a tedious
process if it must be done manually. Model reconstruction can simplify this
task by creating a timing model automatically. It works by analyzing a
system trace recorded from hardware. By detecting common timing patterns
in the trace a model of the application can be created [47].

1.2 Related Work

The two main topics discussed in this thesis are tracing and hardware to
system mapping. While the former has been an important topic in the
literature over the last three decades, the necessity for the latter has only
become important in recent years.

Tracing

Ferrari [12] gives an comprehensive overview of major computer performance
evaluation techniques and their application to various types of performance
problems. In his book Computer Systems Performance Evaluation he dis-
tinguishes between three trace measurement techniques: software, hybrid,
and hardware based trace measurement. It is important to understand that
these techniques do not directly relate to the trace abstraction levels dis-
cussed in the previous sections. The concepts described in his book which
was released in 1978 are still relevant today, the implementation is outdated.

Mink et al. [38] discuss hardware based performance measurement in
more detail. They argue that hardware tracing is the only sufficient trace
technique for recording resource utilization information because of the high
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signal speeds involved and the fact that not all signals are visible to software
measurement techniques. Resource utilization is concerned with detailed
information about the operation of the hardware such as cache hit ratios
and access delays. Moreover, they mention that software based tracing is
intrusive and thus changes the runtime characteristics of an application.

Kraft et al. [29] discuss trace measurement in the context of five in-
dustrial projects. They argue that hardware trace solutions require large,
expensive equipment mainly intended for lab use. Additionally, they claim
that software based trace solutions can also remain active in applications
post-release. Based on this arguments they use a software based trace mea-
surement approach in their paper. They introduce a software instrumen-
tation approach with a very low overhead according to their measurement
results.

Hardware to System Mapping

Lauterbach [18] provides a possibility to export task and runnable system
events for traces recorded via hardware tracing. However, their approach
is limited to a subset of the existing task and runnable events. For exam-
ple, runnable preempt and resume, and task wait events are not covered
by the Lauterbach export even though this information is relevant for the
real-time analysis. Lauterbach uses the information from the OSEK Run
Time Interface (ORTI) files and relies solely on function trace events for the
export.

Kraft et al. [29] also discuss how task events on system level can be
recorded. They argue that it is difficult to detect which entity blocks a task
because the scheduling status of the OS only provides information about the
entity type blocking the task not the entity itself. They suggest code instru-
mentation as a pragmatic solution to work around this problem, admitting
that this approach is problematic because the instrumentation points have
to be maintained by the developer.

1.3 Interrogation

Timing analysis of embedded system requires a trace, i.e., a sequence of
events, with sufficient duration and timestamp accuracy. The minimum
trace duration is dependent on the application and requirements that should
be validated. Fundamentally, the longer the trace duration the more infor-
mation for the real-time analysis of the application are acquired. However,
more data requires longer processing times. Therefore, a trace duration of
at least one second is demanded in this thesis to provide a tradeoff between
processing time and sufficient length for the real-life use-cases discussed in
section 1.1.

Timestamp accuracy is important for the real-time analysis because if the
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resolution is too low no meaningful analysis may be feasible. For example,
if events can only be recorded in the range of milliseconds, the analysis of
requirements in the microseconds range is not feasible.

Kraft et al. [29] also state that a timestamp accuracy in the milliseconds
range is too coarse-grained for embedded systems timing analysis. Especially
for validation of simulation tools and model reconstruction cycle accurate
timestamps would provide enormous benefits. From these requirements the
first hypothesis that should be evaluated in this thesis can be derived.

Hypothesis 1 There exists a trace technique that allows recording of cycle
accurate traces for embedded multi-core real-time system with a duration of
at least one second.

Trace techniques output a trace on software level, i.e., a sequence of
software events. These events provide information about the code segments
executed by an application and the memory regions accessed. This informa-
tion allows deep insights into the runtime behavior of an embedded system,
but is not sufficient for its real-time analysis.

Traces on system level or in other words, sequences of system events are
required for the real-time analysis of embedded multi-core applications. In
the context of this thesis system events are defined as all events that are
contained in the BTF specification and not explicitly excluded in subsec-
tion 2.2.2. With an understanding of the underlying OS mechanisms it may
be possible to map software to system events.

OSEK/VDX and AUTOSAR are common standards for the development
of applications in the automotive industry. These standards are discussed
in more detail later. OSEK/VDX compliant operating systems feature a
so-called ORTI file.

The aim of ORTI is to make OS internal data visible to external tools
[43]. This means it is possible via ORTI to relate software level entities to
their respective interpretation on system level. It must be examined if a
mapping for all BTF entities is feasible.

Hypothesis 2 A complete mapping from software to system entities is fea-
sible based on the information included in the ORTI file for an OSEK/VDX
compliant Operating System.

If Hypothesis 2 does not hold other ways to achieve a complete software
to system mapping must be found. An OS must keep track of the states of
all relevant system objects internally. Otherwise, it would not be possible to
execute appropriate actions if required. For example, if one task activates
another one the OS must determine whether the corresponding task is al-
lowed to be activated or if the maximum number of activations has already
been exceeded.

By analyzing the internal data structures of an OS it may be possible
to construct a mapping from software to system entities. Considering the
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previous example, there might be an OS data structure that keeps track of
the remaining activations for each task entity. If the field for a task is incre-
mented, an entity of the corresponding task terminates. If it is decremented
a new task instance is activated.

Hypothesis 3 A complete mapping from software to system entities is fea-
sible for an OSEK/VDX compliant Operating System.

1.4 Outline

In oder to transform a trace recorded from hardware to a trace on system
level an understanding of the underlying operating system mechanisms is
required. An OS standard commonly used in the automotive industry is
OSEK OS. It is discussed in section 2.1.

The real-time behavior of an embedded multi-core application can be
represented by a system trace. Based on a system trace an application
can be examined and specified timing requirements can be validated. BTF
is a system level trace format and used in this thesis. It is discussed in
section 2.2.

There exist different techniques to record traces of embedded applica-
tions. In chapter 3 an overview of these techniques is provided. It is then
argued why hardware tracing is the only technique sufficient for the valida-
tion of embedded real-time applications. Accordingly, hardware tracing is
then discussed in more detail.

On the basis of the information in chapter 2 the mapping between soft-
ware entities and system entities is described in chapter 4. Mapping is done
for all BTF entities that are relevant for the analysis of embedded multi-core
applications as discussed in subsection 2.2.2.

In chapter 5 the mapping is validated. For that reason criteria to com-
pare BTF traces are established in subsection 5.1.3. Based on these criteria
simulated traces and traces recorded hardware are compared and evaluated.
This is done in two steps. Firstly, test applications are created manually to
cover all possible BTF actions in subsection 5.2.2. Secondly, applications
are created randomly to avoid selection bias in the creation of test cases in
subsection 5.2.3.

Finally, the results of this thesis are discussed in chapter 6 and possible
topics for future work are outlined in chapter 7.
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2 Fundamentals

This thesis discusses the transformation of hardware events to system events
for OSEK/VDX compliant real-time OSs. Hence, the parts of OSEK/VDX
that are relevant for this thesis are described in the following.

Additionally, a well-defined format is required to represent the resulting
traces consisting of entities on system level. The BTF format which is
discussed in section 2.2 is used within the context of this work.

2.1 OSEK/VDX OS

OSEK/VDX (Offene Systeme und deren Schnittstellen für die Elektronik
in Kraftfahrzeugen) [45] is an effort of the German and French automo-
tive industry to establish common standards for the software architecture
of distributed control units in vehicles. Defining a common architecture for
communication, operating systems, and network management avoids prob-
lems that arise otherwise by using different interfaces and protocols. An
abstraction layer between hardware and software allows OSEK/VDX com-
pliant applications to be reused on different hardware platforms with minor
modifications.

OSEK OS specifies the architecture of a real-time operating system for
single processors. Based on the services offered by the OS, integration of
modules from different manufactures is possible. The OS meets the hard
real-time requirements demanded by automotive applications. OSEK OS
can also be used in multi-core environments. In such cases a separate kernel
is executed on each core. Service routines can be used to interact between
multiple OS instances.

A high level of flexibility is required for an OS to support real-time sys-
tems on various target platforms. In order to support low-end and high-end
microcontrollers alike OSEK/VDX conformance classes (CCs) are specified.
Depending on the CC certain features, e.g. multiple task activations, multi-
ple tasks per priority, and extended tasks are available or not.

Dynamic creation of system objects like tasks, alarms or events is not
supported by OSEK OS. All objects are defined statically and created during
the system generation phase [42]. Consequently, all OS entities are known
before the system execution.
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2.1. OSEK/VDX OS

Figure 2.1: OSEK/VDX compliant OSs abstract application modules and hard-
ware via an OS layer. A non standardized I/O module still results in hardware
dependencies.

Figure 2.1 illustrates the abstraction of application modules from hard-
ware resources. Standardized system services offer functionality that can be
used by all application modules. Well-defined service calls, type definitions,
and constants are specified and ensure the portability of an application to
different architectures.

An Input/Output (I/O) module parallel to the OS gives access to mi-
crocontroller specific functionality like serial interfaces or analog-to-digital
converters. I/O interfaces are not specified by OSEK OS which is oppos-
ing to the idea of easy portability. OSEK/VDX’s follow-up standard AU-
TOSAR (AUTomotive Open System ARchitecture) [5] solves this problem
by adding a MCAL (Microcontroller Abstraction Layer) to the AUTOSAR
OS specification [4].

In 2003 AUTOSAR was established by automobile OEMs, suppliers, and
tool developers pursuing the same goals like OSEK/VDX. Different parts of
the AUTOSAR standard are based on OSEK/VDX and AUTOSAR OS
constitutes a superset of OSEK OS. Consequently, all features discussed
here are also relevant for AUTOSAR OS. Differences that are important in
the context of this thesis are mentioned explicitly.

2.1.1 OSEK Architecture

OSEK/VDX provides a specification for the architecture of an embedded
real-time OS. One of the main purposes of the OS is to manage the avail-
able computational resources of the CPU. Based on different factors such
as priority, task group and scheduling policy, executable entities, so-called
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2.1. OSEK/VDX OS

Figure 2.2: Task state model of an extended OSEK OS task. A basic task cannot
enter the waiting state.

processes are given access to the processor core. The procedure of deciding
which entity is executed next is called scheduling.

There are two types of process entities available: tasks and Interrupt
Service Routines (ISRs). Former are scheduled on task level while for latter
the interrupt level is used. Entities on interrupt level always have precedence
over entities on task level. Scheduling on interrupt level depends solely on
the priority of an entity and is done by hardware. For task entities scheduling
is done by the OS and depends on priority, scheduling policy, and task group.

Tasks are categorized into two types by OSEK OS. A basic task has
three states: ready, running, and suspended. An extended task is a basic
task with the additional waiting state. Suspended tasks are passive and can
be activated. A task in the ready state can be allocated to the CPU for
execution which is then indicated by the running state. Only one task per
core can be in the running state at a given point in time. Extended tasks
can wait passively for an event. In that case they reside in waiting state.
Waiting tasks are not allocated to the CPU.

Different task state transitions are possible as shown in Figure 2.2. At
system initialization all tasks are suspended. If a task has to be executed
it must be activated by a system service. A task can be started by the OS
in order to be executed. A task is preempted if a task of higher priority is
scheduled. Once a task has finished execution it terminates and switches

9
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Figure 2.3: ISR scheduling is done by hardware and is solely depended on the
interrupt priority. ISRs do not have a ready state because they are started by
hardware.

Figure 2.4: Scheduling behavior of a non (top) vs a full (bottom) preemptive task.
A non preemptive task finishes execution even though a task with higher priority
is in ready state. Only for certain system services, for example, an inter-process
activation, the other task may be scheduled. A full preemptive task is preempted
if a task with higher priority is activated. Once this task has terminated, the task
with lower priority can continue running.

to the suspended state. Extended tasks can wait for system events and are
released and switched to ready once the expected event is set. The previous
state of a ready task is not implicitly known.

Priorities are assigned to tasks and ISRs statically. The lowest priority
is zero and greater integers mean a higher priority. If an ISR of priority
zero is running and another ISR of priority one is activated, the first ISR
is preempted and restarts once the second ISR is terminated as shown in
Figure 2.3. For tasks the same scenario is dependent on scheduling policy
and task group.

OSEK OS specifies three scheduling policies: non, full, and mixed
preemptive scheduling. For a non preemptive tasks, rescheduling is only
possible if a system routine that causes rescheduling, e.g. an inter-process
activation or an explicit scheduler call is executed. A full preemptive task

10
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Figure 2.5: Scheduling of task entities is not only dependent on priority and schedul-
ing priority. OSEK/VDX specifies task groups, which change the priority of tasks
inside in relation to tasks outside a specific group. In this example Task 3 has a
greater priority than Task 2. However, because they are in the same group, Task 2
inherits the priority of Task 1. Thus, Task 2 is not preempted by Task 3.

can be rescheduled at any point in time during its execution if another task
of higher precedence is activated as shown in Figure 2.4. A mixed preemp-
tive system contains tasks with both, non, and full preemptive scheduling
policies. Otherwise the system is either non or full preemptive.

The precedence of a task is not necessarily due to its priority. OSEK
OS introduces the concept of task groups which allows it to group multiple
tasks into a group. A task which is not within a group has precedence over
a task within a group only, if its priority is higher than the priority of the
task with the highest priority within this group. This means a task acts non
preemptive towards another task if the task with the highest priority within
the group has a greater priority than the other task as shown in Figure 2.5.

OSEK/VDX Conformance Classes are used to adapt applications
to different hardware capacities such as available memory and CPU speed.
Only one CC can be active at a time and cannot be changed during runtime.
Basic CCs (BCC1 and BCC2) allow basic tasks only, while extended CCs
(ECC1 and ECC2) allow basic and extended tasks. Level one CCs (BCC1
and ECC1) allow multiple tasks per priority and multiple activation requests
per task. For level two CCs (BCC2 and ECC2) multiple tasks can share the
same priority and the same task can be activated multiple times as shown
in Table 2.1. This means BCC2 and ECC2 allow Multiple Task Activation
(MTAs). An active task with pending activations becomes ready again
immediately after termination.

Task scheduling is done by the OS while ISR scheduling is done by hard-
ware. ISRs can be divided into category one and category two. Category
one ISRs do not run under OS control and are thus not allowed to call OS
services. Category two ISRs are monitored by the OS and are allowed to
execute a subset of the available OS services. Tasks are always preempted
by ISRs and can only continue running when all ISRs have terminated.
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2.1. OSEK/VDX OS

BCC1 BCC2 ECC1 ECC 2

MTA no yes no yes
Multiple tasks per priority no yes no yes

Extended tasks no no yes yes

Table 2.1: OSEK OS specifies multiple CCs to respect the computational capacities
of different platforms. Depending on the CC different features are supported or not.

Tasks and ISRs serve as containers for application specific functions.
These functions are not managed by the OS and must be added to the
process code by the user. AUTOSAR invented the concept of runnables to
solve problems related to the VFB (Virtual Function Bus) introduced by
the AUTOSAR architecture [40]. A runnable is essentially the same as a
function.

Events are system objects that can be set or not. Each event is owned
by at least one extended task. Only a task that owns an event is allowed to
clear and to wait for it. When waiting for an event a task switches into the
waiting state. It is switched back to ready when the corresponding event is
set.

All tasks and category two ISRs are allowed to set an event. Events are
used as a binary communication technique. One task can signal another one
for example, if a certain resource has been released. Events are defined and
assigned to tasks before runtime. All events assigned to a task are cleared
when this task is activated.

Resource management is used to manage access to shared objects. An
OSEK/VDX resource is basically a mutex. Each resource gets a ceiling
priority that is at least as high as the highest priority of all tasks that access
this resource. When a task accesses a resource and its priority is lower than
the ceiling priority of this resource its priority is raised to the ceiling priority.
The priority is reset to the original value once the task releases the resource.

This technique ensures that a task that potentially accesses a shared re-
source cannot switch into the running state. This prevents priority inversion
and deadlocks. On the downside, tasks with a priority lower than the ceiling
priority may be delayed by a lower priority task.

Alarms are used to activate a task, set an event or execute an alarm-
callback routine. Each alarm has an alarmtime and a cycletime that is
statically defined and measured in ticks. An alarm expires the first time
after alarmtime ticks and afterwards every cycletime ticks. Thus, an alarm
can be used to activate a task or set an event periodically.

Each alarm is assigned to a counter object but each counter can be used
by multiple alarms. Counters are responsible for triggering an alarm after
the specified number of ticks have passed. Each OSEK OS offers at least
one counter that is based on a hard- or software timer.

Hook routines can be used to allow user-defined code within OS in-
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2.1. OSEK/VDX OS

Define Meaning

E OK Service finished correctly.
E OS ACCESS Calling task is not an extended task.

E OS CALLLEVEL Service called from invalid level.
E OS ID Invalid OS ID.

E OS LIMIT Number of activations is exceeded.
E OS NOFUNC Alarm or resource is not in use.

E OS RESOURCE A resource is still occupied.
E OS STATE Object is in invalid state.
E OS VALUE Value is not allowed.

Table 2.2: OSEK OS defines a StatusType type that can be used to return an error
code from service routines. This table shows the status types that are defined by
OSEK/VDX and their meaning. Users are free to define additional codes.

ternal processing. They cannot be preempted by tasks and ISRs and only a
subset of the available OS services is available from their context.

The StartupHook and ShutdownHook can be used to execute user spec-
ified code at system start and shutdown. OS errors result in a call to the
ErrorHook. It can be used to execute application specific error handling.
Finally, PreTaskHook and PostTaskHook are called at task start and termi-
nation.

2.1.2 OSEK OS Services

OSEK OS specifies system services that can be used to interact with internal
OS mechanisms and objects like tasks or resources. The internal presenta-
tion of system objects is implementation specific. Only specified system
services allow well-defined interaction with OS objects. A system service
may take zero or more input parameters and may return zero or more out-
put parameters via call by reference. The return value of an OS service is
of type StatusType. Table 2.2 shows defined status types.

A task can be activated via alarm or ActivateTask service routine. Latter
is callable from interrupt and task level. The task to be activated must be
provided as an input parameter. If this task is suspended its state will be
changed to ready. If it is not suspended the pending activations counter is
incremented or E OS LIMIT is returned if the MTA limit is exceeded.

TerminateTask is used to switch a task from running to suspended. All
internal task resources are released and the service will not return if the
call was successful. TerminateTask will fail with E OS RESOURCE if resources
are still occupied by a task. ChainTask is a combination of ActivateTask and
TerminateTask. It terminates the current task and activates another task
which is provided via input parameter.

Schedule can be called to explicitly trigger a scheduling decision. This
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Figure 2.6: An explicit call to the scheduler can solve the problem of a delayed
higher priority task.

makes sense for non preemptive tasks if a task with higher priority is ready.
Normally the task with higher priority is delayed until the task with low
priority has finished execution as shown in Figure 2.4. By calling Schedule

the non preemptive task is preempted and the task with higher priority is
executed as illustrated in Figure 2.6.

The routines GetResource and ReleaseResource can be used to request and
release resources. Nested resource requests are only allowed in last-in-first-
out order, i.e. the resource that has been requested first must be released last.
Within a critical section that is protected via a resource no calls to services
that cause rescheduling are allowed. Both methods can be called from task
and ISR level. If a requested resource is already occupied E OS ACCESS is
returned.

Interaction with event objects is done via SetEvent, ClearEvent, GetEvent,
and WaitEvent service routines. SetEvent takes a mask of events that should
be set for a specific task. Events can be deleted from the context of a process
owning this event via ClearEvent. GetEvent returns the current status of all
events related to a specified task. A task can wait for one ore more events
using the WaitEvent service routine. Waiting lasts until at least on of the
specified events is set.

The service routine GetAlarmBase returns the basic configuration of an
alarm. The remaining ticks until an alarm expires can be retrieved with
GetAlarm. SetRelAlarm increases the remaining ticks by the submitted value
while SetAbsAlarm sets them to an absolute value. An alarm can be deacti-
vated with CancelAlarm.

2.1.3 OSEK OIL and ORTI

The implementation of system objects is not specified by OSEK/VDX.
Therefore, users cannot know how to create system objects because cor-
rect definition is depending on the OS. OSEK Implementation Language
(OIL) solves this problem by providing a meta language for defining system
objects [41]. Based on OIL configuration files code generators provided by
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Figure 2.7: An OSEK/VDX application is compiled from three sources. The OS
kernel, user created code and OSEK OS object definition files which are created
via code generation based on one or more OIL files.

the OS vendor can produce OS specific source code. In combination with
kernel and user code an application can be built as shown in Figure 2.7.

OSEK/VDX specifies data types for all system object types. However,
the implementation of the data types is OS specific. For example, a task is
identified by TaskType. TaskType could be implemented as an integer indexing
a global list of task objects or as a pointer to the task object itself.

Only a minimum amount of data types necessary to interact with service
routines are specified. Consequently, a lot of information is kept internally
by the OS and is not available for the user. For example, there is no common
interface to get data of the pending activations of a task, the current state
of a resource, or the state of an event.

Application code that needs this information would need to access the
OS internals directly which results in portability and security issues. More-
over, external tools like debuggers that want to provide OS aware debug
information have no standardized interface to relevant internal data.

OSEK Run Time Interface (ORTI) was specified to solve this problem.
Via ORTI tool vendors have a standardized interface to OS internal data and
properties of relevant system objects. The Kernel Object Interface Language
(KOIL) format is used to exchange relevant information via the ORTI file.
This file contains mappings from OS object properties to variables that hold
the respective information.

ORTI specifies a set of system properties that must be available for
every OSEK/VDX compliant OS. Operating system vendors are free to add
additional information. Each OS object is described in a separate section of
the ORTI file. The specified sections that are relevant for this thesis are os,
task, alarm, and resource.

Information about the currently running process, the system error state,
and the active service routine can be found in the OS section shown in
Table 2.3. The servicetrace attribute is written whenever a service routine
is started or finished along with the ID of the corresponding routine. Task
and ISR processes that are currently running in a system can be retrieved via
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TASK T CylinderResponser {
p r i o r i t y = ”osTcbActualPrio [ 3 0 ] ” ;
s t a t e = ”osTcbTaskState [ 3 0 ] ” ;
c u r r e n t a c t i v a t i o n s = ”osTcbActivationCount [ 3 0 ] ” ;

5 } ;

Listing 2.1: Textual representation of the ORTI attributes for a task entity.

Attribute Content

runningtask currently running task
runningisr2 currently running category 2 ISR
servictrace indicates entry and exit to service routines

lasterror contains the last error code set by the system

Table 2.3: The ORTI OS section provides information about the running task and
category 2 ISR, entry and exit to service routines and the last system error.

runningtask and runningisr2. The attribute lasterror provides information
about the last failure condition.

As shown in Table 2.4 the ORTI task section makes the current pri-
ority, state, and number of open activations (currentactivations) for each
task available. Listing 2.1 shows the textual representation of the ORTI
attributes for a single task.

Table 2.5 shows that alarms have an alarmtime attribute that contains
the ticks to the next expiry time. A cycletime is used for periodic alarms.
If a cyclic alarm expires, alarmtime is reset to this value. An alarm can be
running or stopped which is indicated by the state attribute and executes a
certain action if alarmtime becomes zero.

A resource can be locked or free which is indicated by the state attribute.
In the former case the locker attribute indicates the corresponding process
as shown in Table 2.6. The resource priority is also accessible.

Additional sections and attributes can be found in the OSEK/VDX
ORTI specification [44]. Even via ORTI not all OS internals become avail-
able. Via servicetrace it can be detected that a certain event is set or cleared
but no information about the event itself is available. Consequently, for cer-

Attribute Content

priority task priority
state task state (Figure 2.2)

currentactivations number of task activations

Table 2.4: The ORTI task section provides information about the current task
priority, task state and number of activations. The task priority can be different to
the statically defined value because of the priority ceiling protocol.
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Attribute Content

alarmtime time till alarm expires
cycletime alarm cycle time of periodic alarms

state alarm state (running or stopped)
action action at alarm expiry time

Table 2.5: The ORTI alarm section provides information about the time that is
left until an alarm expires, its cycle time, the current state and the action that is
executed once the alarm expires.

Attribute Content

state resource state (locked or unlocked)
locker the task that has locked a resource

priority resource priority

Table 2.6: The ORTI resource section provides information about the state of a
resource. A resource can be locked or not. For a locked resource the corresponding
task is made available.

tain use cases it may still be necessary to access OS specific data structures
manually.

2.2 System Trace

A trace is defined as a sequence of events. Events depict a change in the
state of a system and can be represented on different levels of abstraction.
These are discussed in more detail in chapter 3. For the timing analysis of
embedded multi-core real-time systems a trace on system level is required.

Tools that analyze or visualize traces must be able to interpret the
recorded events. For example, the software that interacts with hardware
trace devices must be able to understand the hardware events that are gen-
erated on-chip. Otherwise it is not possible to transform the hardware events
into higher level software events. For that reason a well-defined format for
events is required for further processing of recorded traces.

Depending on the goal pursued with a trace measurement, one level
of abstraction can be more appropriate than another. On the one hand,
a software engineer who implements a feedback control system is mainly
interested in the functions and variables that correspond to that particular
task. A system engineer on the other hand, who integrates a variety of
different modules into a single application, is not interested in the details of
each individual module. Instead the functionality of the system as a whole
is of interest.
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Field Meaning

time (t) Timestamp relative to a certain point in time.
source (Ψ) Entity that caused an event.

source instance (ψ) Entity instance that caused an event.
target type (ι) Type of the entity that is influenced by an event.

target (T ) Entity that is influenced by an event.
target instance (τ) Entity instance that is influenced by an event.

action (α) The way in which target is influenced by source.
note (ν) An optional field that is used for certain events.

Table 2.7: A BTF event consists of eight fields. An event describes the way in
which one system entity is influenced by another one.

2.2.1 BTF Specification

A trace on system level can be used to analyze timing, performance, and
reliability of an embedded system. Best Trace Format (BTF) [57] was speci-
fied to support these use cases. It assumes a signal processing system where
one entity influences another entity in the system. This means an event
does not only contain which system state changes but also the source of
that change. For example, an observed event on system level could be the
activation of a task with the corresponding timestamp. Then a BTF event
additionally contains the information that the task activation was triggered
by a certain alarm.

Let k be an index in N0 denoting an individual event occurrence then a
BTF event can be defined as an octuple

bk = (tk, Ψk, ψk, ιk, Tk, τk, αk, νk) (2.1)

where each element maps to a BTF field: tk is the timestamp, Ψk is the
source, ψk is the source instance, ιk is the target type, Tk is the target, τk is
the target instance, α is the event action and νk is an optional note.

A BTF trace can then be defined as a sequence of BTF events where
n ∈ N0 is the number of events in the trace:

B = (b1, b2, . . . , bn) (2.2)

A BTF event can be represented textually as a comma-separated list
where each field maps to an element as shown in the following listing.

12891 , TASK 200MS , 3 , SIG , EngineSpeed , 0 , write , 42

The first field (12891) represents the timestamp of the event. A BTF
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trace contains the chronological order of events that occurred in a system.
Therefore, for each timestamp tk ∈ N0 in a trace it holds that tk ≤ tk+1.
All timestamps within the same trace must be specified relative to a certain
point in time, that can be chosen arbitrarily. Hence, neither trace nor system
start must occur at t0 = 0. The time period between two events bk and bk+1

can be calculated as ∆t = tk+1 − tk. If not specified otherwise, the unit for
time is nanoseconds.

A BTF event represents the notification of one entity by another. Each
entity has an unique name. In the previous example, the source entity Ψ
has the name TASK 200MS and the target entity T is called EngineSpeed.

The fourth field SIG is the short representation of the target entity type
ι. Table 2.8 gives an overview of all entity types and their corresponding
short IDs. Entity types are discussed in more detail in subsection 2.2.2. In
this example, the target entity EngineSpeed is a signal. The source entity
type is not part of a BTF event.

Some entities, tasks, ISRs, runnables, and stimuli have a lifecycle. This
means at a certain point in time an entity becomes active in the system and
eventually it leaves the system. For example, the lifecycle of a task starts
with its activation and ends when it terminates. If MTAs are allowed for
an application, it is possible that multiple instances of a task are active at
the same time. For those cases where multiple instances of an entity are
currently active, it is consequently not clear to which instance of the entity
the event refers.

Instance counter fields ψ and τ are used to distinguish between multiple
instances of the same entity. The counters are integer values ψ, τ ∈ N0 that
are incremented for each new entity becoming active in the system. The first
instance of an entity gets the counter value 0. TASK 200MS has an instance
counter value of 3 which means the event refers to the fourth instance of this
entity. For entities that do not have a lifecycle like signals, the counter field
is not relevant and 0 can be used as a placeholder value.

The seventh field α represents the way in which the target entity is in-
fluenced by the source entity. In this example TASK 200MS writes a new
value to the signal entity EngineSpeed. Depending on source and target en-
tity type, different actions are allowed by the specification as discussed in
subsection 2.2.3.

For signal write events the note field ν is used to denote the value that is
written to the signal in this case 42. The note field is only required for certain
events. Table 2.7 summarizes the meaning of the different BTF fields.

A BTF trace can be persisted in a BTF trace file. This file contains
two parts: a meta and a data section. The meta section is written at the
beginning of the file. It contains general information on the trace such as
BTF version, creator of the trace file, creation date, and time unit used by
the time field. Each meta attribute uses a separate line, starting with a #,
followed by the attribute name, a space, and the attribute definition.
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#ve r s i on 2 . 1 . 4
#c r e a t o r BTF−Writer ( 1 5 . 0 1 . 0 . 5 3 7 )
#creat ionDate 2015−02−18T14 : 1 8 : 2 0Z
#t imeSca le ns

5 0 , Sim , 0 , STI , S 1MS , 0 , t r i g g e r
0 , S 1MS , 0 , T, T 1MS 0 , 0 , a c t i v a t e

100 , Core 0 , 0 , T, T 1MS 0 , 0 , s t a r t
100 , T 1MS 1 , 0 , R, Runnable 0 , 0 , s t a r t

25000 , T 1MS 1 , 0 , R, Runnable 0 , 0 , terminate
10 25100 , Core 1 , 0 , T, T 1MS 0 , 0 , terminate

Listing 2.2: A BTF trace file contains of two sections. A meta section at the
beginning of a file includes information such as creator, creation date and time
unit. It is followed by a data section that contains one event per line. Comments
are denoted by a number sign followed by a space.

In the data section one BTF event is written per line in chronological
order. The first event of a trace is located directly after the meta section
and the last event at the end of the file. Comments are denoted by a #

followed by a space. Listing 2.2 shows an example trace file.

2.2.2 BTF Entity Types

As shown in Table 2.8 BTF specifies fourteen entity types that can be classi-
fied into five categories: environment, software, hardware, operating system,
and information. Some entity types are not relevant for this thesis and there-
fore only discussed briefly. The actions or in other words the way in which
one entity can be influenced by another are defined for each entity type as
discussed in subsection 2.2.3. Actions for types that are classified as not
relevant are not considered.

Environment contains only the stimulus entity type. Stimuli are used
to depict application behavior that cannot be represented by other entity
types. A stimulus can be used to activate a task or ISR and to set a signal
value. Multiple stimulus instances can exist in a system at a certain point
in time. Thus, the instance counter field is required for stimulus entities.

Software contains the task, ISR, runnable, and instruction block types.
Tasks and ISRs summarized by the term process are containers for applica-
tion software and discussed in section 2.1.

Runnable is a term established by AUTOSAR and relates to the con-
cept of C type functions. A runnable can be executed from the context of
processes and contains application specific functionality. Multiple runnables
can be active in a system at the same time for example, if the same runnable
is executed by two different tasks allocated to distinct cores. Hence, an in-
stance counter is required for runnable entities.

Instruction blocks are used to represent execution time within the con-
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Category Entity Type Type ID Relevant

Environment Stimulus STI X

Task T X
Software ISR I X

Runnable R X
Instruction Block IB

Electronic Control Unit ECU
Hardware Processor Processor

Core C X
Memory Module M

Scheduler SCHED
Operating System Signal SIG X

Semaphore SEM X
Event EVENT X

Information Simulation SIM X

Table 2.8: BTF entity types can be divided into five categories. Types that are
relevant in the context of this thesis are marked by an X.

text of runnables. Since these execution times become available implicitly
via the corresponding runnable events, the addition of instruction blocks to
a BTF trace is optional and does not provide any immediate benefits.

Hardware contains the electronic control unit (ECU), processor, core,
and memory module types. An ECU consists of one or more processors.
This allows it to represent a multi-processor system. Generally, tracing only
supports the recording of a single processor. Multi-processor setups require
a way to synchronize the measurement between multiple trace measurement
tools. The design of such a setup is not in the scope of this thesis.

A processor is composed of one or more cores and recording multiple
cores on the same chip is feasible via tracing. Cores are necessary to map
software and OS events to the corresponding hardware entities. Since this
information is important for the analysis of embedded systems, cores are
relevant for this thesis.

Memory modules model different memory sections on a chip. They allow
it to represent memory related processes on the CPU such as access times
to variables or cache misses. According to Helm [19], direct measurement of
memory access times is not possible. Instead, dedicated code must be added
to the application in order to determine the execution times for different
memory access operations. Due to the intrusiveness of this approach it
is not feasible for real applications. Therefore, memory modules are not
supported in this thesis.

Operating System covers scheduler, signal, semaphore, and event en-
tity types. The scheduler entity type is used to represent actions executed by
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the OS that relate to the scheduling of process instances. Scheduler events
become available implicitly via the respective process actions and are thus
not considered in this thesis.

Signals represent access to variables that are relevant for the analysis of
an application. Consequently, signal events must be added to a BTF trace
that is recorded from hardware.

Semaphores entities are used to control access to common resources in
parallel systems. A process can request a semaphore before it enters a
critical section, e.g. a section that contains an access to a memory region
that is vulnerable to race conditions. If the semaphore is free the request
is accepted, the semaphore is locked and all subsequent requests fail. Once
the process has left the critical section it releases the semaphore.

Events are objects for inter-process communication provided by the OS.
One process can use an event to notify another one for example, when a
computation finishes or a resource becomes available. Event entities do not
have a lifecycle therefore, no instance counter value is required.

Information contains only the simulation entity type. This entity type
has two purposes. Firstly, it can be used to provide information about errors
that occurred during trace recording. Secondly, it is required to trigger
stimulus events. Since stimulus events are mandatory to represent task
activations by non process objects, the simulation entity must be considered
in the context of this thesis. Because simulation does not make sense in
a trace recorded from hardware system can be used as a more appropriate
term.

2.2.3 BTF Actions

BTF specifies different actions. The available actions are dependent on the
source and target entity types of the respective event.

Stimuli only support the trigger action. A stimulus can be triggered by
process and simulation entities. Once a stimulus is triggered it can be used
for the actual event: the activation of a task or ISR or to set the value of a
signal.

Process entities support the actions shown in Figure 2.8. A process
instance starts in the not initialized state. From there it can be activated in
order to switch into the active state by a stimulus entity. All state transitions
except activate are executed by core entities. An active process is changed
into the running state as soon as it is scheduled by the OS.

A running process can preempt, terminate, poll, and wait. Preemption
occurs if another process is scheduled to be executed on the core. In this
case, the current process changes into the ready state. A ready process
resumes running once the core becomes available again. If a process finishes
execution it terminates and switches into the terminated state. This finishes
the lifecycle of a process instance.

22



2.2. System Trace

Figure 2.8: BTF [57] specifies more process states than OSEK/VDX (compare
Figure 2.2). The additional states polling and parking are required to represent
active waiting. Not initialized and terminated indicate the beginning and end of a
process lifecycle. The green boxes between the states show the name of the BTF
action for the respective transition.
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Figure 2.9: BTF runnable states and state transitions [57].

A process that polls a resource switches into the active waiting state
polling. If the resource becomes available, the process continues running
which is indicated by the run action. A process that waits for an event
switches into the passive waiting state waiting. A waiting process is released
into the ready state if one of the requested events becomes available.

A polling process that is removed from the core is parked and switched
into the parking state. If the resource becomes available while the process
is parking it is switched into the ready state. This transition is called re-
lease parking. Otherwise the process continues polling, once it is reallocated
to the core which is called poll parking.

In addition to state transition actions, BTF specifies process notification
actions. These actions do not trigger a process state change but indicate
other events related to a process entity. The mtalimitexceeded action is
triggered if more process instances than allowed are activated in parallel.
If this happens, no new task instance is created. Therefore, a notification
event is necessary to make the event visible in the trace.

All other process notification actions are related to migration the real-
location of a process from one core to another. OSEK OS does not support
process migration since a separate kernel is executed on each core. Thus
migration notifications are not relevant for an OSEK/VDX compliant OS.
Additionally, migration actions become available implicitly via the respec-
tive process transition actions. If a process instance is preempted on one core
and resumed on another, the resume event has a different source core than
the preempt event. Consequently, the related migration event is known.
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Runnable instances start in the not initialized state as shown in Fig-
ure 2.9. Runnables can be started by ISRs and tasks in order to switch into
the running state. A runnable instance that terminates switches into the
terminated stated and therefore finishes its lifecycle.

Because a runnable can only be executed from process context, it can
not continue running if the respective process is preempted. In this case
the runnable must be suspended. Once the process resumes execution the
runnable can also resume.

Core entities are used to provide an execution context for process entities
and cannot be used as a target entity themselves. Consequently, no BTF
core actions are specified. Only one process can be allocated to a core at
the same time and core entities do not have a lifecycle.

Signal entities can be influenced by two actions: read and write. A
signal can be read within the context of a process entity. This means that the
value of a variable is retrieved from memory. A signal entity does not have
a lifecycle thus, the instance counter value for signals can remain constant.

Write actions can be executed by process and stimulus entities. They
indicate that a new value is assigned to a variable. If this assignment is done
from process context, the respective process entity is the source for the write
event. Otherwise, a stimulus entity can be used to represent the source for
example, if a signal is changed by the OS or a hardware module.

For signal writes, the note field must denote the value that was assigned
to a variable. For read events the note field can optionally indicate the value
of the variable that was accessed.

Semaphores can be categorized into different types. Counting sema-
phores can be requested multiple times. They have an initial counter value
of zero. For every request, this counter is incremented and every time it is
released the value is decremented. A counting semaphore is locked once the
counter has reached a predefined value.

A binary semaphore is a specialization of a counting semaphore for which
the maximum counter value is one. A mutex is a binary semaphore that
supports an ownership concept. This means a mutex knows all processes
that may request it. This information allows the implementation of priority
ceiling protocols in order to avoid deadlocks and priority inversion. The
OSEK/VDX term for mutex is resource, resources are discussed in subsec-
tion 2.1.1.

BTF semaphore events can represent all mentioned semaphore types.
Semaphore actions can be divided into two categories: actions triggered by
process instances as shown in Table 2.9 and actions executed by a semaphore
entity itself as shown in Figure 2.10.

A process request to a semaphore is indicated by requestsemaphore. If a
request is successful the semaphore counter is incremented and the process
is assigned to the semaphore. The exclusivesemaphore action represents
a semaphore request that only succeeds, if the semaphore is currently not
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Action Meaning

requestsemaphore Process requests a semaphore.
exclusivesemaphore Process requests a semaphore exclusively.

assigned Process is assigned as the owner of a semaphore.
waiting Process is assigned as waiting to a locked semaphore.
released Assignment from process to semaphore is removed.

increment Semaphore counter is incremented.
decrement Semaphore counter is decremented.

Table 2.9: Processes can interact with semaphores in different ways. If a process
requests a semaphore successfully, it is assigned to the semaphore and the counter is
incremented, otherwise a waiting event is triggered. Once a semaphore is released,
the assignment is removed and the counter is decremented.

Figure 2.10: BTF [57] semaphore entities do not have a lifecycle. Nevertheless,
they must be initialized before they are ready for the first time. A semaphore can
be unlocked or locked. A counting semaphore can be requested multiple times in
which case it changes into the used state. If there are no requests the semaphore is
free. A semaphore that has at least as many requests as allowed is full and changes
into the locked state. Further requests in the locked stated result in an overfull
action.
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requested by any other process, i.e. the counter value is zero. If a process
fails to request a semaphore and switches into polling mode, indicated by
the waiting action. A process that releases a semaphore decrements the
semaphore counter and the respective semaphore is released, the process is
no longer assigned to it.

Semaphores do not have a lifecycle which is why their instant counter
remains constant. Nevertheless, a semaphore must be moved from the not
initialized to the free state by the ready action before it is requested for the
first time.

A free semaphore is not requested by any process. At the first request the
behavior is dependent on the semaphore type. A mutex or binary semaphore
is locked and moved into the full state. A counting semaphored is changed
into the used state which is indicated by the used action. The used action
is repeated for a counting semaphore for each further request or release
as long as the counter value stays greater than zero and smaller than the
maximum value. If the counter value of a used semaphore becomes zero this
semaphore is freed. If the maximum counter value is reached the semaphore
state becomes full which is indicated by the lock used action.

When a full binary semaphore or mutex is released, it is unlocked and
becomes free again, while a counting semaphore is changed back to the used
state, indicated by the unlock full action. A request to a full semaphore
entity results in an overfull action and the state is changed to overfull. The
overfull state indicates that there is at least one process polling a semaphore.
Each additional request also results in an overfull action. Once there are no
more processes waiting for a semaphore, this semaphore becomes full again.

Events can be influenced by three different actions. If a process starts
waiting for an event, this is indicated by the wait event action. Another
process can set an event via the set event action. For this action it is neces-
sary to provide the entity for which the event is set via the BTF note field.
An event can be cleared by the process for which the event was set which is
indicated by clear event.
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Computer systems can be analyzed with measurement tools that detect
events, i.e. changes in the state of a system [12, p. 28]. The same event
can be interpreted on different levels as shown in Figure 3.2. A hardware
trace tool can detect a voltage change in memory, e.g. triggered by the
processor which is a hardware event. Accordingly, the variable that maps
to the changed memory register changes too which is a software event. If
this variable is related to the state of a task, a change of the variable also
means a change of the task state which is then called a system event.

In many cases, the event of interest cannot be measured directly. One
or more transformation steps are required to retrieve the required result. If
a transformation process is executed the measurement is said to be indirect
[12, p. 28]. Considering the previous example a task termination event
cannot be measured directly. However, a variable that contains the current
task state can be measured. If the task corresponding to the variable and
the mapping from value to task state is known, a change of the variable can
be transformed into a higher level event the termination of a task. After
the transformation process the measurement results can be displayed to the
user as shown in Figure 3.1.

During the transformation step the collected data may be manipulated
which is called prereduction. Prereduction may for example be used when
the actual event is not required, but rather the amount of events of a certain
type that occurred. For this case the transformer would increment a counter
whenever a certain event type is collected. If no prereduction is executed, the
measurement process is called tracing. Tracing is the process of recording

Figure 3.1: The conceptual parts of a measurement process according to Ferrari
[12]. A sensor measures data. One or more transformation steps are required if the
data is not yet in the desired format. Finally the result can be presented to the
user.
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Figure 3.2: A measurement event can be interpreted on different levels. A voltage
change in memory can be detected by a hardware trace tool capable of supervising
the memory bus that triggers the voltage change. The memory section can relate to
a variable, that changes in consequence of the voltage change, which is a software
event. If the variable is related to the state of a task, a change of the variable also
means a change of the task state which is then called a system event.

a sequence of events in chronological order of occurrence [12, p. 30]. The
result of this process is called a trace.

3.1 Trace Tools

Ferrari [12, p. 31ff] distinguishes three trace measurement tools: software,
hybrid, and hardware tools. All tools are meant to examine the behavior
of a system. However, there are differences in interference, resolution, and
cost as summarized in Table 3.1.

If a measurement tool uses resources of the target system it causes in-
terference by using computational power and memory that could otherwise
be utilized by the application. A tool that causes interference is said to
be intrusive and may cause degradation, a reduction in performance of the
target system [12, p. 29]. Consequently, intrusive trace tools change the
real-time behavior of an application.

An event can be represented on different levels. A voltage level change
in memory can map to a variable which can map to the state of a task as
visualized in Figure 3.2. Those levels are called hardware level, software
level, and system level. To clarify the level of a trace, it can be mentioned
explicitly. For instance, a trace consisting of hardware level events is a
hardware level trace [32, p. 29f]. Tools that can detect hardware events
occurring at a microscopic level are said to have a higher resolution than
tools that can detect software events only.

Different trace techniques can detect and record events with different
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frequencies. The maximum frequency is usually not limited by the speed
with which events can be detected, but by the available bandwidth to process
and record the detected events.

The cost of different trace tools depends on several factors, the price for
hardware and software licenses, the price for installing and maintaining the
tool, educational costs, like training for the users of a tool, and the costs of
operating the tool.

Software tools add instructions to a hardware-software system in order
to detect and record events of interest. Added instructions are called instru-
mentation. The simplest kind of instrumentation is a classical write to the
standard output interface, e.g. a printf statement in the C programming lan-
guage. Instructions may be added to the application code directly, via the
compiler or post compilation via dynamic binary instrumentation [60][33]. If
no standard output interface is available, events are recorded into memory
on target. From there they can be read out via debugger or serial inter-
face. Instrumentation always interferes with the application. There are two
components of interference, a space, and a time component [12, p. 44]. Ex-
ecution of instrumentation code takes time and storing detected events uses
memory space. Software tools have a low resolution because they cannot
detect events on a hardware level. Event detection frequency is limited by
the available computational resources. On the upside they are usually cheap
and easy to implement and use.

Hardware tools do not rely on instrumentation which means that they
are non intrusive and do not interfere with the application [34]. Hardware
tracing works via a dedicated trace device chip that is located on the silicon
of the CPU. Trace devices provide a very high resolution since they are
capable of detecting events at hardware level [38]. Additionally the event
detection frequency can be as high as the actual system frequency, thus it is
possible to record a complete hardware-software system in real-time. Hard-
ware tools are more expensive compared to software solutions. Installation
and maintenance are more complex and require properly qualified users.

Hybrid tools rely on instrumentation and a dedicated hardware inter-
face to record events. The boundary between software, hybrid, and hardware
tools can be fuzzy in certain cases. Software tools need some kind of hard-
ware interface to send recorded traces off-chip. In this sense, all software
tools are hybrid tools. However, industry hybrid solutions often require pro-
prietary target interfaces which justifies why these tools fit into a separate
category [46]. Compared to pure software tools, hybrid tools interfere with
the system to a lesser extent [39]. A dedicated hardware interface allows it
to send events off-chip in real-time. Consequently, more memory becomes
available on target.

As shown in Table 3.1 hardware trace tools have many advantages over
hybrid and software based solutions. Hardware tracing does not interfere
with the system, which is especially important for real-time systems. Hard-
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Software Hybrid Hardware

Interference high low no
Resolution low low high

Cost low low high
Frequency low low high

Table 3.1: Properties of different trace measurement tools [31, p. 6]. Hardware
tools are superior to software and hybrid tools but come with higher expenses.

ware trace tools are capable of detecting events with a higher resolution and
frequency. Additionally the trace duration of software and hybrid traces is
limited to the available memory on target and to the trace interface band-
width. When the same quantity can be measured by a hardware and a
software tool, the values obtained by the hardware tool are usually to be
considered more accurate because of the lower interference [12, p. 45].

3.2 Hardware Tracing

Hardware tracing is capable of recording events on hardware level. A dedi-
cated on-chip trace device and trace interface is required to record hardware
events and send them off-chip [37]. Target access hardware is connected to
the trace interface to readout the trace measurement results. From there
the events are forwarded to a host computer for further processing. Soft-
ware that runs on the host computer in order to analyze the recorded trace
data is provided by the target access hardware vendor [25]. The term host
software is used to refer to such applications.

The on-chip trace device is designed to record hardware events executed
by the microcontroller. It occupies a separate section on the silicon. Usually
a controller is delivered in two versions, one with and one without trace de-
vice. In production the ability to execute trace measurement is not required
[34]. Therefore, the trace device would only increase chip costs without
providing any benefits.

Figure 3.3 shows the trace device of the Infineon TC27x microcontroller
family [2]. The upper part belongs to the product chip while the lower
part displays the trace device. The trace device can gather data from the
product part via two interfaces. POBs (Processor Observation Block) record
processor events while BOBs record bus events. All events are collected,
enhanced with a timestamp and buffered in the on-chip trace memory. From
there they are sent off-chip via the dedicated trace interface.

There exist different techniques to add timestamp information to a trace
event. The obvious way is shown in Figure 3.4. A timestamp is added to
each trace event that is sent off-chip. To save bandwidth timestamps are
provided relatively to the previous event. An absolute value is computed by
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Figure 3.3: A microcontroller with hardware trace support consists of two sections.
A regular product chip part and the trace device part. The trace device part can
be omitted in the production version of a chip to save costs [23].

Figure 3.4: Each trace event is assigned a timestamp relative to the previous event.
By summing up the relative timestamps absolute values can be generated.
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Figure 3.5: Via dedicated timestamp events, the timestamps of the other events can
be interpolated. In this example two events are recorded between the previous and
the next timestamp event. This is why both events get the same timestamp, based

on these events. The value is calculated via Equation 3.1 as ti = 5 + (15−5)
2 = 10.

Figure 3.6: Dedicated I/O pins can be used to output a timestamp value whenever
a measurement event is sent off-chip.

summing up all previous timestamp.
Another way is to send dedicated timestamp messages as shown in Fig-

ure 3.5. The timestamps for the actual trace events are then interpolated,
e.g., via the equation

ti = tp +
(tn − tp)

2
, (3.1)

where tp is the previous timestamp (the latest timestamp before the
event), tn the next timestamp (the soonest timestamp after the event) and
ti the timestamp interpolated based on the dedicated timestamp events.

Finally, timestamps can also be created via dedicated I/O pins as speci-
fied by the Nexus [61] standard. This means that whenever a trace event is
sent off-chip via the trace interface, the current timestamp is provided via
the I/O pins as shown in Figure 3.6.

Cycle accurate timestamps are feasible with all timestamp generation
techniques. However, timestamp accuracy and resolution are only partly
dependent on the generation technique. More important factors are CPU
and trace device clock frequency, as well as the design of CPU and trace de-
vice. For cycle accurate timestamps, trace device frequency must be greater
or equal to CPU frequency. Even if this is the case, cycle accurate time-
stamps cannot necessarily be guaranteed.

For example, super scalar processors like the Infineon TC277 [2] are ca-
pable of executing more than one instructions per cycle. However, only one
event can be processed per cycle by the trace device as shown in Figure 3.7.
The processor observation block filters the instructions according to user
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Figure 3.7: Even if the trace device runs at CPU clock frequency, cycle accurate
timestamps cannot be guaranteed.

specified filter rules and forwards them for further processing. If two in-
structions, executed during the same processor cycle, match the filter and
are thus forwarded to the trace device, one of those instructions is delayed
by one cycle (in this example Instruction 2.1). For a processor running at
100 MHz this would set the timestamp off by 10 ns for this particular event.

The design of trace devices differs depending on the processor family and
the processor vendor. However, the general concept and provided function-
ality are the same for all devices. Various standards for the implementation
of trace devices are specified and used by chip vendors. Three common stan-
dards are Nexus used by PowerPC processors [61], ETM (Embedded Trace
Macrocell) used by ARM processors [62, p. 476], and the Infineon Multicore
Debug Solution [51] discussed here and shown in Figure 3.3.

According to Figure 3.1, a measurement process starts with the detec-
tion of an event by a sensor. In case of the trace process the sensors are the
POBs and BOBs. Each POB monitors the instructions executed by one pro-
cessor core. This means the complete program flow executed by a processor
core can be recorded. BOBs are connected to the data busses of the mi-
crocontroller and can detect memory access events. A memory access event
may be for example, writing to a variable or reading from a special function
register. A typical data trace event contains in addition to the timestamp,
details like address, data value, transfer size, and whether a read or write
access occurred [21].

Filters can be specified by the user to reduce the amount of recorded trace
events. They can be set for an address or for an address range. Different
events can be executed if an address filter matches: the corresponding event
can be recorded, discarded or another event can be triggered. For example,
it is possible to start or stop the trace process if a specific function is accessed
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or a variable is written. Filter configuration is done via the host software.
Corresponding to the two main hardware event types, instruction, and

data access events, two hardware trace techniques can be distinguished,
program flow trace and data trace [34]. The two trace techniques can be
executed in parallel or individually as configured by the user.

A program flow trace (also called function trace) shows the complete
execution path of an application for the duration of the trace recording.
This means it is possible to detect when a certain function is called or
which branch of an if statement is executed. The amount of instructions
and the resulting data stream bandwidth produced by a modern CPU is
too big to be transmitted via the trace interface. To solve this problem
trace devices use trace compression. The most commonly used program
flow trace compression technique works by detecting and recording only
such instructions that cause a change in program flow such as conditional
jumps and traps [21]. Using the application binary the host software is able
to reconstruct the complete program flow.

A data trace is a sequence of data access events. Data tracing allows
it to supervise and to debug the state of variables in memory. Data tracing
of all active units is becoming increasingly important because not all data
interactions involve a processor [35]. Thus, trace devices must also be able to
detect memory accesses via DMA (Direct Memory Access) and accesses to
memory of special on-chip modules like FlexRay or Ethernet. The units that
are supported by a microcontroller are depended on the trace device, but all
trace devices support tracing the main memory of a controller. Compression
is also applied to data traces. However, those techniques are usually not
sufficient to record a complete data trace of significant length since the
amount of generated data is too big. The best way to solve this problem
is to apply filters to avoid detecting and recording data events in memory
sections that are not of interest [21].

A recorded hardware trace event is buffered into an on-chip trace mem-
ory. From there the events can be read via the trace interface. On-chip
trace memories can be operated in different modes [34]. In continuous mode
the trace data is streamed of chip in real-time. This technique is limited by
the bandwidth of the trace interface. If it is high enough the trace dura-
tion is only depended on the available memory on the host computer and
traces of arbitrary length can be recorded. If the bandwidth is too small to
process the recorded trace stream buffer mode must be used. This means
the recorded trace is written into trace memory and read out by the target
access hardware post tracing. Buffer mode can be used in pre- and post-
trigger mode. In pre-trigger mode the trace buffer is filled like a circular
buffer. The oldest events are discarded for new events. The trace process
can be stopped at an arbitrary point in time and the latest trace events
become available. In post-trigger mode the trace process is stopped as soon
as the buffer has been filled for the first time.
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3.3. Hardware Trace Toolchain

Figure 3.8: Recording a hardware trace and making it available to the user requires
multiple steps. Hardware events must be measured on target via a trace device.
Using a trace interface the recorded data can be readout by the target access hard-
ware and transmitted to a host computer. Target access hardware vendors provide
special software to analyze and visualize the recorded trace.

Standard Architecture Function Trace Data Trace

Nexus PowerPC
Branch Trace

Messaging
Data Trace
Messaging

ETM ARM
Program Trace

Macrocell
Embedded Trace

Macrocell

IMDS TriCore
Processor

Observation Block
Bus

Observation Block

Table 3.2: Trace devices exist for different CPU architectures. All solutions provide
methods for recording program flow and data traces.

A trace device operated in buffer mode is limited by the available trace
memory. The trace memory size of an Infineon TC275 microcontroller (Fig-
ure 3.9 a)is 2 MB which allows for approximately 33 ms of unfiltered function
and data trace of a single processor core running at 200 MHz [34]. Depend-
ing on the measurement use case this may be sufficient or not. If the trace
duration should be increased tracing in continuous mode is mandatory. Con-
tinues tracing requires a high bandwidth interface such as AGBT (Aurora
Gigabit Interface).

3.3 Hardware Trace Toolchain

Multiple steps are required from recording a hardware trace on target to
presenting it to the user on a personal computer as shown in Figure 3.8.
Many different solutions exist for each of those steps. Nevertheless, the
basic functionalities provided by all solutions is comparable to each other.

The basic prerequisite for executing a hardware trace is the availability
of an on-chip trace device. All major chip vendors provide trace devices for
their microcontrollers that support program flow and data trace. Table 3.2
gives an overview of the state-of-the-art trace solutions.

Events that have been recorded by the trace device are sent off-chip via a
dedicated trace interface. If the bandwidth provided by an interface is lower
than the transfer rate of created events continuous tracing is not possible.
However, this use case is often required. There are two ways two solve this
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Interface Pros/Cons DAQ rate [MB/s]

JTAG

+ Reuse of existing interface
+ Small chip area
− Low bandwidth 1.2

DAP2/SWD

+ High bandwidth with few pins
+ Small silicon area
− Proprietary 10

AGBT

+ Very high bandwidth with few pins
− Large silicon area
− High cost 30

CAN
+ Robust and well known standard
+ Low cost
− Very low bandwidth

0.05

Table 3.3: Commonly used trace interfaces and their DAQ (Data AcQuisition)
rates. AGBT (Aurora Gigabit Interface) is the only interface capable of recording
continuous hardware traces of a complete system.

problem. The amount of created trace data can be reduced using filters or
the available bandwidth can be increased. If an entire application must be
analyzed as a whole the first way is not an option.

Mayer et al. [36] give an overview of trace interfaces used in the automo-
tive industry as shown in Table 3.3. JTAG (Joint Test Action Group) is a
common debug standard [22], suitable for regular debugging. It can be used
to read out a buffered traced post tracing, but for continuous tracing it is
not sufficient due to its low bandwidth of 1.2 MB/s. Because of that DAP
and DAP2 were developed by Infineon and SWD by ARM. Both protocols
are based on JTAG but use a higher frequency and improved communication
protocols to provided more bandwidth.

AGBT is currently the fastest trace interface. It was specified by XIL-
INX and adopted by the Nexus standard. AGBT is the only interface which
is theoretically capable of recording a continuous trace of a complete appli-
cation running on a processor with a frequency of 200 MHz. CAN is used
by some hybrid trace tools but is only mentioned for completeness since its
bandwidth is too low to be considered for hardware tracing.

Target access hardware is connected to the hardware interface to read-
out recorded trace events. From the target access hardware the data is
transmitted to a host computer for further analysis via USB 3.0 or Eth-
ernet. Examples for target access hardware are the iC6000 by iSYSTEM
[24] (Figure 3.9 b) and the PowerTrace-II by Lauterbach [59] (Figure 3.9 e).
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Figure 3.9: A complete trace workbench. An Infineon TriCore evaluation board
(a) can be traced by the iSYSTEM iC6000 (b) or the Lauterbach PowerTrace-2 (e)
via the highspeed AGBT interface. Host software is used to control the hardware
and to analyze the recorded trace, for example WinIDEA (c) by iSYSTEM and
TRACE32 (d) by Lauterbach [20].
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Both devices support different architectures and trace interfaces by using
architecture specific debug cables. Besides reading hardware traces those
devices also support all functionalities provided by a regular debugger such
as step wise debugging, reading of memory content, and manipulation of
CPU configuration registers.

Dedicated software on the host computer is used to configure and control
the target access hardware and the trace device itself. After recording, this
software transforms the recorded hardware trace into a software trace (see
Figure 3.2). For this process the host software must have access to the ELF
file of an application. This is required to map the addresses of hardware
trace events to the corresponding software entities. Based on the software
trace, different analysis techniques such as metric evaluation, performance
analysis, and code coverage are supported. Gantt charts are provided to
examine the trace visually. Via export functions a software level program
flow and data trace can be made available for external tools. Figure 3.9
shows the toolchain described in this section.
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Systems are analyzable on different levels of abstraction as shown in Fig-
ure 3.2. Depending on the use case, one or another level is more sufficient to
perform the required analysis. For example, a hardware designer does not
care about task states while a system engineer is usually not interested in
voltage levels of transistors in memory.

For the timing analysis of an embedded system a trace on system level is
required because timing requirements are usually specified for system entities
such as tasks or signals. Hence, system level traces contain the information
necessary to validate an application with respect to its timing behavior.

A trace long enough, so that all relevant entities appear with sufficient
frequency for the timing analysis, is required. For example, at least two
task instances must be activated in one trace to calculate the activate-to-
activate time. Additionally, it is important not to influence the timing of an
application by trace measurement. Consequently, the only sufficient trace
technique for the timing analysis of embedded systems is hardware tracing
according to Table 3.1.

Hardware tracing records events on hardware level. As stated above this
level is not sufficient for the timing analysis of an embedded system. Thus,
it is necessary to transform hardware events to system events as shown in
Figure 4.1. Two steps are required for this transformation. Hardware level
events must be transformed into software level events which are then further
processed into system level events.

The first step is done by the trace software. It is capable of analyzing and
interpreting the hardware events that are recorded from the processor. Via
the application binary files it is possible to map the raw memory addresses
contained in the hardware events to the corresponding symbols of the real
application as depicted in Figure 4.2.

Depending of the trace device further steps may be required. For exam-
ple, some trace devices produce timestamps, relative to the previous event
which must then be transformed into absolute timestamps. Another exam-
ple are program flow traces. Hardware level program flow events are usually
only recorded for instructions that change the flow of an application as de-
scribed in section 3.2. Only with the application binary it is possible for the
software to reconstruct a complete program flow trace.
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Figure 4.1: Hardware tracing records events on hardware level. This is not sufficient
for the timing analysis of an embedded system. Thus, it is necessary to transform
the hardware events to system events. This requires two steps. In the first step
hardware events are transformed to software events. This step is done by the
trace software and requires the application binary. The next transformation step
produces a trace on system level, e.g. in the BTF format. An ORTI file as well as
additional information that can for example, come from a timing model file (RTE)
are required for this step.

Figure 4.2: The trace software is capable of transforming a hardware level event to
a software level event. This involves for example, changing memory addresses with
the actual symbol names based on the application binary (ELF file). Further actions
may be required depending on the trace device. Note that the displayed hardware
event is just a generalization, the actual structure can be different depending on
the trace device vendor.
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Based on the software level trace, a system level trace can be generated in
the next step. A suitable system level trace format is BTF which is described
in section 2.2. It is capable of representing the behavior of an application in a
way that is eligible for its timing analysis. Different additional information,
e.g. the ORTI file is required to execute the transformation from software
to system level trace.

4.1 Mapping Proceedings

Transformation from hardware to software level is done by the trace soft-
ware. Corresponding to the composition of an on-chip trace device it creates
two types of traces on software level: a data trace and a function trace.

Let i be an index in N0 denoting an individual event occurrence. Then
a data event can be defined as an octuple

di = (ti, πi, ai, vi, ci) (4.1)

where ti ∈ N0 is the timestamp in nanoseconds, πi is the name of the
accessed variable, ai ∈ {R,W} is the way in which the variable is accessed
either R for read or W for write, vi ∈ N is the value that was read or written
and ci is the core name on which the access has occurred.

Consequently, a data trace can be defined as a sequence of data events
where n ∈ N0 is the number of events in the trace.

D = (d1, d2, . . . , dn) (4.2)

Let j be an index in N0 denoting an individual event occurrence. Then
a function event can be defined as a quadruple

fj = (tj , πj , θj , cj) (4.3)

where tj ∈ N0 is the timestamp in nanoseconds, πj is the name of the
accessed function, θj ∈ {A,Ω} indicates whether the function has started
(A) or terminated (Ω), and cj is the core name on which the function event
has occurred.

After that a function trace can be defined as a sequence of function
events where m ∈ N0 is the numbers of events in the trace.

F = (f1, f2, . . . , fm) (4.4)

Based on Equation 2.1, Equation 4.2, and Equation 4.4 the goal is to
describe a function g so that

g : (D, F )→ B, (4.5)
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where the timestamps t of the events in D, F , and B are relative to
the same point in time. However, D and F alone are not sufficient for the
transformation from software to hardware level because of three reasons.

Firstly, the events on software level do not provide enough information to
decide which variable maps to a certain entity on system level. For example,
the state of each task is stored in a certain variable. Whenever the state
changes, this variable changes too and a data event is generated. However,
the transformation function does not know that the variable maps to the
state of a task. Because of that the ORTI file described in subsection 2.1.3
is required. Via this file it is possible to relate variables to the corresponding
system objects.

Secondly, not all entity types specified by BTF for example, runnables
and signals are included in the ORTI file. The former are included in the
function trace, the latter in the data trace. But if the transformation func-
tion is not able to distinguish regular functions from runnables and regular
variables from signals this information cannot be used. Thus, it is necessary
to provide a list of those entities to the transformation function.

Finally, it is necessary to keep track of the internal state of an application.
If the ORTI file is available it can be detected that a certain task has changed
its state. Consequently, a BTF event must be generated. Without the
knowledge about the previous task state however, it is not possible to decide
which task action has occurred. If the task changes into the running state,
this could mean that the task has started for the first time resumed from
ready state or continued to run after polling a resource.

Because of this reasons the function g must be redefined as

g′ : (D, F, o, l, S)→ (B, S′) (4.6)

where o is the ORTI file of the traced application, l = (lr, ls) is a tuple
that contains a list of runnables lr and a list of signal names ls, and S and S′

are the system states before and after the transformation. The information
must be part of the system state S is discussed in the next sections.

4.2 ORTI Mappings

Task entities are capable of executing twelve actions according to Figure 2.8
plus the additional notification event if the MTA limit is exceeded. The
lifecycle of a task entity starts with its activation.

An activation can be detected via the ORTI task status attribute. If
no other task instance of the same task entity is active in the system, a task
whose state changes to ready is activated. However, this does not work if
a task instance of the same task is already active in the system. This can
happen if multiple task activations are allowed by the OSEK Conformance
Class. In case of a MTA the corresponding OSEK/VDX task status attribute
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Action ORTI attribute System state

trigger (ipa) servicetrace (ActivateTask) running task
trigger (alarm) alarmtime -

Table 4.1: In BTF, a stimulus must be triggered so that it can activate a task. On
target a task can be triggered via an IPA or by an alarm. The first can be detected
via the servicetrace attribute, while the latter is indicated if the alarmtime attribute
reaches the value zero.

already indicates an active state (any state that is not suspended) and will
not change to ready again.

Consequently, another way to detect task activations is required. Via
the ORTI currentactivations attribute, the number of open activations for
each task can be detected. Whenever this attribute is incremented, a new
task activation BTF event must be created. Therefore, it is necessary to
keep track of the number of activations for each task entity in the system.
Only if the previous number of activations for a task is known, it is possible
to decide whether the value is incremented or decremented when a new data
write event occurs. Thus, the number of current activations for each process
is a relevant information and must be part of the system state s.

Since tasks have a lifecycle it is necessary to keep track of the instances
for each task entity. Whenever a new task is activated the instance counter
must be incremented and the counter value is assigned to the task. The
same procedure is necessary for all other entities that have a lifecycle. The
latest instance counter value for each entity must be available in the system
state s to create correct BTF events. Additionally, it is necessary to add
newly created tasks to a list of task instances active in the system. When a
task’s lifecycle ends, i.e., the task terminates, it is removed from this list.

A stimulus is required to activate a task. Stimuli can be triggered by
process and by simulation entities. A stimulus triggered by another process
represents an Inter-Process Activation (IPA). An IPA is implemented via the
ActivateTask service routine. The ORTI servicetrace attribute can be used to
detect when this routine is executed. Whenever the ActivateTask routine is
entered and a task is running on the same core a stimulus event is created
with the task as the source entity.

Alarms are the second way to activate tasks. The alarmtime attribute
indicates how many ticks are left until an alarm expires. The ORTI file
also contains the action that is executed by an alarm. Thus, a stimulus can
be triggered whenever an alarm that activates a task reaches an alarmtime
value of zero.

A triggered stimulus must be added to the system state. Later, when the
actual task activation is executed by the OS the latest stimulus is removed
from the system state and used to create a correct BTF event. Table 4.1
summarizes how stimulus events are detected.
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TASK(EngineManager ) {
/∗ Wait a c t i v e l y u n t i l EngineResource becomes a v a i l a b l e . ∗/
whi le ( GetResource ( EngineResource ) != E OK) ;
engineRPM = calculateEngineRPM () ;

5 ReleaseResource ( EngineResource ) ;

TerminateTask ( ) ;
}

Listing 4.1: The BTF polling state indicates that a process is actively waiting for
a resource. This listing shows how this might be impolemented in C.

A task start event occurs if a task which was previously active changes
to running. There are two cases for which preempt and resume actions must
be created. The first case is a normal state change that can be detected via
the task status attribute. A task is preempted if the state changes from
running to ready and resumed if the state changes from ready to running.

However, the task state is not updated by the OS when a task is pre-
empted by an ISR. Consequently, a task preempt event must also be created,
if the runningisr2 attribute indicates that a new ISR is running on the core
and a resume event must follow once the ISR terminates execution.

A task terminate event occurs if a running task changes into the sus-
pended state. The previous state must not be known because a task can
only be terminated from the running state.

However, there is a special case for task terminate events. As mentioned
in subsection 2.1.1, a task with pending activations switches directly into
the ready state, after the current instance terminates. To work around this
problem it is necessary to detect when a certain task instance executes the
TerminateTask service routine via the servicetrace attribute. If this happens
a flag in the system state must be set to indicate that the respective task
instance has been terminated. Whenever a task changes from running to
ready this flag must be checked to decide whether the corresponding event
is a preemption or a termination.

A wait event occurs if a running task waits for an event that is not set.
In this case the OS will change the task state to waiting and the task is
removed from the core. A release event occurs once the event is set and
the OS changes the task state to ready.

Poll actions are more difficult to detect, since they are not directly
related to a concept specified by OSEK OS. The idea of the BTF polling
state is to indicate that a task is actively waiting for a resource. In code this
can be implemented via a loop in which a resource is requested repeatedly
until it becomes available as shown in Listing 4.1.

Via servicetrace and lasterror it can be detected that a process has
requested a locked resource: the servicetrace attribute indicates when the
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GetResource service routine is called and E OS RESOURCE is written to the
lasterror attributed in case the resource is locked.

However, a single request does not necessarily mean that a change into
the polling state is happening. Instead a task might just execute one code
segment, if the resource is available and a different one, if it is not. There-
fore, it is necessary to set a previous request flag for a task instance that
has requested a locked resource once. If another request follows in the same
running interval a poll event is generated. Once there are no more requests,
the last request must have been successful and a run event is created to in-
dicated the state change from polling to running. Then the previous request
flag must be cleared.

A park action must be created if a task that is in polling state is changed
into the ready state. Next, it is necessary to detect resource state changes
of the resource which the parking task has been polling. If the respective
resource changes into an unlocked state, a release parking event is created.
On the other hand, if the resource stays locked and the task changes back
into running state, a poll parking event is required.

The mtalimitexceeded notification event is the last task event that
must be detected. This event is created, if a task activation gets triggered,
but no actual task instance is added to the system. An OSEK/VDX com-
pliant OS writes an E OS LIMIT error into the lasterror attribute, if a task
activation is triggered, but the maximal MTA value is already reached. To
create a valid BTF event it is necessary to know for which task entity the
error is created. Since ORTI does not provide this information the creation
of mtalimitexceeded events is not feasible. Table 4.2 gives an overview of the
task mapping.

ISRs and tasks share the same BTF state model. However, OSEK/VDX
does not specify a detailed state model for ISRs as it does for tasks. Con-
sequently, the basic process actions activate, start, resume, preempt, and
terminate are detected differently compared to task actions as shown in
Table 4.3. ISRs are not allowed to wait for events. Therefore, waiting re-
lated process state transitions must not be considered. The detection of
semaphore polling events works equally to task events and is therefore not
discussed again.

An Interrupt Service Routine is triggered by a hardware interrupt. This
means if the hardware detects a certain condition, e.g., an I/O pin state
changes from high to low, the program flow is interrupted and a certain
code section that is mapped to this interrupt is executed. Depending on the
trace device, it may or may not be feasible to detect the activation of an
interrupt via the corresponding ISR control register.

In the former case, it is possible to create a stimulus and the resulting
activate event by detecting when the interrupt activate bit is set in the cor-
responding control register. Otherwise, the activate event must be created
when the ISR changes into the running state for the first time. In this case
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Action ORTI attribute System state

activate currentactivations currentactivations, last stimulus
start state (running) state (active)

resume state (running) state (ready)
resume runningisr2 running task

preempt state (ready) task not terminated
preempt runningisr2 running task

terminate state (suspended) active tasks
terminate state (ready) task terminated

wait state (waiting) -
release state (ready) state (waiting)

poll lasterror servicetrace, previous request
run servicetrace state (polling)

park state (ready) state (polling)
poll parking state (running) state (parking)

release parking resource state state (parking)
mtalimitexceeded lasterror entity cannot be detected

Table 4.2: Different pieces of information are required to detect all possible task
actions. The states in the ORTI attributes column are OSEK/VDX task states
while the states in the system information column are BTF process states. The
previous state is necessary to create correct events. For example, a task state change
to running could mean a BTF start, resume or run event.
For some actions, it is necessary to use multiple approaches to detect them. For
example, a task terminate event happens if the OSEK/VDX state of changes to
suspended. However, if another entity of the same task is already activated, a
change to suspended does not occur. To catch this case it is necessary to set a
task terminated attribute for a task instance when it calls the TerminateTask service
routine.

Action ORTI attribute System state

activate - -
start runningisr2 ISR stack

resume runningisr2 ISR stack
preempt runningisr2 ISR stack

terminate runningisr2 ISR stack

Table 4.3: The runningisr2 attribute is used to detect basic ISR actions. Because
ISRs are not allowed to wait for events, waiting state related actions must not be
created. All other actions can be detected in the same way as for task instances as
shown in Table 4.2.
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Figure 4.3: A stack can be used to track the active ISRs in a system. This is
necessary to create appropriate BTF events. For example, the event when isr foo
is set as the running ISR, is different, depending on the current state of the stack.
If the ISR is already on the stack, a resume event must be created, otherwise a
start event.

trigger, activate, and start event are all created with the same timestamp.
The currently running category two ISR is indicated by the runninngisr2

ORTI attribute. Each ISR has an unique ID that is written into the variable,
if the respective entity is running. Otherwise runningisr2 is zero which
indicates that no ISR is active. Mapping from ID to name is included in
the ORTI file. If runningisr2 changes to the ID of a certain ISR, it is not
possible to decide whether this instance runs for the first time or whether it
is resumed, after it has been preempted by an ISR with higher priority as
shown in Figure 4.3.

Therefore, it is necessary to keep track of the active ISR instances in the
system, e.g. via a stack. Whenever the value of runningisr2 changes it is
checked whether the corresponding ID is already on the stack. If so, the ISR
was already running and has been preempted. Consequently, the ISR that
caused the preemption has terminated and must be popped off the stack.
The ISR that has been preempted must be resumed.

The other case is that the new ISR has not been running yet, i.e. is
not on the stack. This means that the ISR on top of the stack, if there
is one gets preempted and the new ISR is started and pushed on the
stack. If runningisr2 becomes zero the last ISR is popped of the stack and
terminated.

As the name indicates, runningisr2 is only written for category two
interrupt routines. Regular ISRs are not managed by the OS and therefore
not detectable via ORTI attributes. Instead function trace must be utilized
to detect when a category one ISR is started or terminated. To map the
function names to actual ISR entities, a list of category one ISRs is required.
If such a list is available, the proceeding is the same as described above.

Runnable actions are detectable via function events. Start and ter-
minate events must be created for function entry and function exit events.
A program flow trace contains the information about all functions in the
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Action ORTI attribute System state

start - running process
terminate - running process

suspend task state running process, process runnables
resume task state running process, process runnables

Table 4.4: Runnable start and stop events can be detected via function tracing.
The source entity for a runnable event is the process in whose context the runnable
is executed. A runnable is suspended when the corresponding process is preempted.
If the process resumes, the runnable is resumed, too.
One runnable can be called in the context of another runnable. This means multiple
runnables can be running within the same process context at the same point in time.
If this is the case, all running runnables must be suspended and resumed.

Action ORTI attribute System state

write - running process
read - running process

Table 4.5: Signals can be read or written. To create valid BTF signal events, it
is necessary to know which process is currently running on the core, i.e., which
process executed the read or write.

system. A list of runnable entity names is thus required to check whether a
function is a runnable or not.

Suspend events must be created, if the process context in which a runnable
is running is preempted and a resume event is required if the corresponding
process resumes. This means that whenever a process is deallocated, a po-
tentially active runnable must be suspended. Once the process is reallocated
the runnable also resumes.

Additionally, runnables can be nested, i.e. one runnable can be executed
by another runnable. If this happens it is important to suspend and re-
sume all running runnables, if the corresponding process is preempted and
resumed.

Signal events are detectable via data events. To decide which data event
corresponds to a signal event a list of signal names must be available. With
this list it can be decided if a certain data event results in a signal event or
not. The source entity for signal read events is the currently running process
as shown in Table 4.5. If no process is running an entity of type simulation
can be used to set the value of the signal.

Event actions are easily detectable via the servicetrace attribute. Via
this attribute it is possible to create set, wait, and clear event actions. How-
ever, in order to create valid event actions, it is also necessary to know the
event entity that relates to the respective action. ORTI does not specify
event related attributes. Because ORTI does not specify OS event related
attributes, it is not possible to create valid actions for this entity type.
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Action ORTI attribute System state

ready resource object -
lock resource locker -

unlock resource locker -
full resource locked, servicetrace -

overfull resource locked, servicetrace -

Table 4.6: OSEK/VDX resources can only be locked or unlocked which means they
do not support all semaphore actions. Lock and unlock actions can be detected via
the ORTI locker attribute.
Full and overfull events are created if an already locked resource is requested again.
This is detectable via the servicetrace attribute. The resource for which the resource
locked attributed was read the last time is the resource for which the error has
occurred.

Action ORTI attribute System state

requestsemaphore resource locker -
assigned resource locker -
waiting resource locked -
released resource locker previous locker

Table 4.7: Via the resource locker attribute it is possible to detect if a resource has
successfully requested a semaphore.
The resource locker attribute changes to the no task ID if the resource is no longer
locked. For this case it is necessary to know the task that has previously locked the
resource in order to create the correct release event.
Waiting actions can be created by detecting data read events to the resource locked
attribute.

50



4.3. OS Specific Mappings

Resource entities must be initialized via the ready action before they
can be used in a BTF trace. This can be done at the beginning of a trace
with the timestamp zero. The ORTI file contains a list of all resource objects
that are part of the application.

Since resources can only be locked or unlocked, they cannot change into
the semaphore used state. Consequently, only the state transition actions
shown in Table 4.6 can occur for resource events. Additionally, only a subset
of the process semaphore actions are required to represent the behavior of
resources.

Via the ORTI resource locker attribute it is possible to detect by which
task entity a resource is locked. This means a lock event can be generated
whenever the ID of a certain task is written to this attribute. On the
other hand, an unlock event is created when resource locker indicates that
the respective entity is currently not locked by any task. Moreover, it is
necessary to assign a process to the locked resource once it is locked by the
task and to release it when the resource is released as shown in Table 4.7.

Full and overfull actions are created when a locked resource is polled by
a process. The semaphore waiting action is used to indicated the identity of
the polling process. As shown above, it is possible to detect whether a pro-
cess is polling a resource via the servicetrace and lasterror ORTI attributes.
Lasterror is set to E OS ACCESS in case a resource is already locked. The
resource for which the polling occurs is detectable via the resource locked
attribute. Whenever a certain resource is requested the OS will read this
attribute to decide whether a request is allowed or not.

4.3 OS Specific Mappings

It is not feasible to create all BTF events relying solely on the ORTI file.
For example, it is necessary to have a list of runnable and signal names in
order to create valid events for those entity types. But even for entities that
are supported by the ORTI interface not all events can be generated. It is
possible to detect if the activation limit of a task is exceeded however, it is
not possible to determine for which task entity this happens.

Nevertheless, even though not all events are detectable via ORTI alone,
an OSEK OS stores the information of interest internally. During a task
activation the OS must decide whether the MTA limit is reached or not. To
do so it is necessary to compare the current amount of pending activations
to the value of maximal allowed activations. Consequently, the OS has to
read certain information from memory which results in data trace events.

Based on this argument all other events can be reconstructed, if the
corresponding OS specific operations are known. On the downside, it is no
longer possible to rely on a standardized interface like ORTI. This means
the algorithm that does the transformation must be customized depending
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Figure 4.4: A mtalimitexceeded event must be created if the E OS LIMIT error is set
via the lasterror ORTI attribute. However, this is not correct for Erika Enterprise
multi-core applications. For a failing inter-core inter-process activation the error
code is written two times, once on the source and once on the target core. Therefore,
special care must be taken, so that the BTF event is created only once.

on the OS. In this section the adaptations required to create a BTF trace
for the OSEK/VDX compliant Erika Enterprise (EE) Operating System [53]
are shown. In section 5.1 the reasons for choosing EE are discussed.

Task mtalimitexceeded events cannot be created based on ORTI alone
because the task entity for which the event occurs is not detectable. One
way to get this information is to remember which task’s currentactivations
attribute was read the last time. The OS has to decide whether a task
instance can be created once an activation is triggered. To do so it compares
the maximum allowed activations with the current number of activations of
a task. In other words, the OS reads the currentactivations attribute for the
task that should be activated. If the MTA limit is exceeded an error code
is written.

As it turns out this approach is not sufficient for multi-core systems.
Activation of a task entity by a task on another core via ActivateTask is im-
plemented by a Remote Procedure Call (RPC) as shown in Figure 4.4. The
RPC triggers an ISR on the other core which performs the required action.
In case of an inter-process activation the ActivateTask routine is executed
again, but this time on the core the target task is allocated to. If the MTA
limit of the task is exceeded an E OS LIMIT error event is written and a
mtalimitexceed event is created.
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i f ( EE th rnact [ TaskID ] == 0U ) {
ev = E OS LIMIT ;

} e l s e {
/∗ Do a c t i v a t i o n . Code removed f o r c l a r i t y . ∗/

5 ev = E OK;
}
i f ( ev != E OK ) {

EE ORTI set las ter ror ( ev ) ;
EE oo not i f y e r ro r Act iva t eTask (TaskID , ev ) ;

10 }

Listing 4.2: Erika Enterprise keeps track of the remaining activations that are
allowed for a task entity. If the value is zero and another activation occurs an
E OS LIMIT error is set.

Action Variable Additional Information

mtalimitexceeded lasterror previous data read event
trigger (alarm) alarm action type ORTI

Table 4.8: Via ORTI it is not possible to detect for which task an E OS LIMIT

event has been created. However, the data read event before this error can be used
to get this information.
Additionally, alarm trigger events cannot be created via the alarmtime attribute in
Erika Enterprise, because it is not implemented in an OSEK/VDX compliant way.
Instead, read events to the ActionType attribute of an alarm can be used to detect
when a stimulus event must be created.

However, the remote procedure call is notified by the remote ISR once
the service routine has finished. The corresponding error code is also re-
turned back to the initial core and written to the lasterror attribute. The
resulting problem is that the transformation algorithm would create another
mtalimitexceeded event based on the last read from the pending activations
variable on the initial core which is not correct.

A way to work around this problem can be derived by looking at a part
of the source code of the ActivateTask implementation shown in Listing 4.2.
It shows that EE keeps track of the remaining activations of each task in
an array called EE th rnact. If the field for a specific task becomes zero, an
E OS LIMIT error is written. This means if a task should be activated on one
core and this activation fails due to too many pending activations this will
become clear by a data read event to EE th rnact directly followed by a write
event to the lasterror attribute. For a remote activation there are multiple
other data events between the error and the previous read to EE th rnact.
Therefore, no incorrect mtalimitexceeded event is created.

Stimulus events must be created for inter-process and alarm activations
as shown in Table 4.1. An alarm activation stimulus is created if the ORTI
alarmtime attribute becomes zero. However, EE OS does not update this
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Figure 4.5: EE implements alarms via a delta queue. There is one queue, containing
of the corresponding alarms, for each counter. Each alarm has a delta value that
indicates after how many ticks in relation to the previous alarm it must be executed.
Only the delta of the first alarm in the queue must be decremented for each counter
tick. If an alarm expires it is removed from the queue, and inserted again in case
it is cyclic.
In this example Alarm 2 expires after three ticks. Since Alarm 5 has a delta of zero
it expires at the same counter cycle. Alarm 4 expires after six cycles, i.e. the sum
of its own and all previous deltas.

attribute in compliance with the OSEK/VDX specification [52]. Hence,
another technique is required to detect alarm events.

EE keeps track of all active alarms in a delta queue as shown in Fig-
ure 4.5. There is one queue for each counter. Whenever a counter is in-
cremented the delta of the first element in the queue is decremented. If
the delta of the first alarm in the queue becomes zero this alarm and all
following alarms with a delta of zero expire and the corresponding actions
are executed.

For an expiring alarm the OS is required to execute the corresponding
action. As shown in Table 4.8 each alarm has an ActionType attribute. Via
this attribute the OS determines the correct action for an alarm. In other
words, if an alarm expires this attribute must be read and a data read event
is generated. Consequently, a BTF stimulus event is created whenever the
action type attribute of an alarm is read. The exact action executed by an
alarm, e.g. which task is activated for a process activation is read from the
ORTI file.

Event actions must include the information about the affected event.
For example, if a task sets an event it is necessary to know the target task
and event for this action. ORTI allows it to detect when an event related
service routine is executed however, no information about the event itself is
made available.

Erika Enterprise uses two arrays to keep track of the event related state
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i f ( EE th status [ TaskID ] == SUSPENDED ) {
ev = E OS STATE;

} e l s e {
/∗ Set the event mask on ly i f the t a s k i s not suspended ∗/

5 EE th event ac t ive [ TaskID ] |= Mask ;

/∗ Check i f the TASK was wa i t ing f o r an event we j u s t s e t ∗/
i f ( ( EE th event waitmask [ TaskID ] & Mask) != 0U)
{

10 /∗ Act i va t e t a s k here ∗/
}

}

Listing 4.3: Erika Enterprise uses the EE th event active array to keep track of the
events set for each task. If a new event is set the mask is updated by connecting
the previous events and the new event via bitwise or. It is not possible to set an
event for a suspended task.

Action Variable Additional Information

wait event EE th event waitmask previous wait mask
clear event EE th event active previous active mask

set event EE th event active previous active mask
all actions - event bit from eecfg.h

Table 4.9: Erika Enterprise uses two arrays to keep track of the event states for
each task entity. Via write events to these arrays and the previous event state for
a task instance correct BTF events can be generated.

of a task: In EE th event active the events currently set for a specific task
instance are stored and EE th event waitmask includes the information about
which events a task entity is waiting for. Each field in the array corresponds
to one task and each bit of a field is related to a certain event. Whenever a
task is terminated both event masks are cleared.

Using these arrays it is possible to create correct events as shown in
Table 4.9. Whenever an OS event related service routine is executed the
corresponding event mask is updated. For example, if an event is set for
a specific task, the event mask is updated based on the new event. This
means the events which are currently set for a task and the new event are
connected via the bitwise or operation as shown in Listing 4.3.

Hence, a data write event to one of those arrays is created whenever
a event service routine is executed. However, only the new state of the
bitmask becomes available. To determine the event ID it is necessary to
remember the previous state of the mask. By executing a bitwise exclusive-
or operation on previous and current mask, the bit of the current event is
computed.

Unfortunately, this information is still not enough to create a valid BTF
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/∗ i f t h i s i s a g l o b a l resource , l o c k the o the r s CPUs ∗/
i f ( i sG loba l ) {

EE ha l sp in in ( (EE TYPESPIN)ResID ) ;
}

Listing 4.4: In case a global resource (a resource used on multiple cores) is requested,
Erika Enterprise uses a spinlock mechanism to lock the CPU until the resource
becomes available.

event. For each bit it is necessary to know the corresponding entity name.
ERIKA Enterprise Operating System defines the bitmask for each OS event
in the eecfg.h file which is created during the code generation process. By
parsing the event defines the mapping between bit and event name is re-
trieved.

Resource events or in BTF terms semaphore events, can be created
based on the information provided by ORTI as shown in Table 4.6. However,
certain semaphore events like waiting can only occur in multi-core systems.
In a single-core system it is not possible that one task polls a resource that
is already occupied because of the priority ceiling protocol.

Erika Enterprise implements inter-core resource requests via spinlocks.
If a task requests a resource that is locked by a task on another core, the
service routine does not return an error code but starts spinning as shown
in Listing 4.4. As a consequence, the mapping for full, overfull, and waiting
actions introduced in the previous section does not work.

To solve around this problem, it is necessary to understand how spinlocks
are implemented in Erika Enterprise. The state of each spinlock is stored
in the EE hal spin status array where each field corresponds to a separate
spinlock. A value of one indicates that the spinlock is locked otherwise
the value is zero. The EE hal spin in method is implemented via the atomic
compare-and-swap operation. This method is used to write a one into a
certain spinlock field, but only if the spinlock is currently free. Compare-
and-swap returns a value that indicates whether the operation was successful
or not. In the latter case the operation is executed again until it succeeds.

Compare-and-swap operations result in a data access to the variable for
which the operation is executed. Therefore, it is possible to detect when a
spinlock is polled based on data access events to EE hal spin in. This infor-
mation can then be used to create correct semaphore events as shown in
Table 4.10.

Whenever the resource locker attribute is read within the context of
the GetResource service routine, the corresponding resource entity must be
stored in the system state. If the resource is free, a write event to the
resource locker attribute follows and the corresponding BTF events can be
created as described above.

If there is no write event to the resource locker attribute the resource
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Action Variable Additional Information

waiting EE hal spin status running task, requested resource
full EE hal spin status requested resource

overfull EE hal spin status requested resource

Table 4.10: Not all BTF semaphore actions can be created based on ORTI alone
for an Erika Enterprise multi-core application. This is because inter-core resource
requests are implemented via spinlocks. Spinlock operations can be detected via
the EE hal spin status array.

is currently locked and the OS starts spinning which is detectable by con-
tinuous data access events to the field of EE hal spin status relating to the
requested semaphore. Consequently, the running process is assigned to the
semaphore via the waiting action and an overfull action must be created.
The process is now in polling mode. Once there are no further accesses to
EE hal spin status the request was successful, the task state changes to running
and the resource state to full.
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5 Validation

In this chapter the software to system mappings are validated as depicted
in Figure 5.1. A timing model of an application is created and a BTF trace
is generated from this model via discrete event simulation. The simulated
trace represents the expected result for the trace recorded from hardware.

Next, C code is generated from the model. The code is compiled, ex-
ecuted on hardware, and the runtime behavior is recorded via hardware
tracing. The resulting software level trace is transformed to system level ac-
cording to the respective mappings. The BTF trace recorded from hardware
is then compared to the simulated trace. Since both traces result from the
same timing model they are expected to represent the same system behavior.

Nevertheless, two kinds of deviations are expected. Firstly, timestamps
of otherwise identical events might differ. This is unavoidable because sim-
ulation is an abstraction of reality and is not capable of taking all subtle
effects influencing the timing on real hardware into consideration. Secondly,
events may indicate a different software behavior. For example, a task starts
a runnable in one trace but not in the other. In this case, the deviation must
be examined because it might point to a mapping error.

5.1 Evaluation Test Bench

To make the results of the validation process comprehensible and repro-
ducible for others it is important to document the hardware and software
setup, the configuration of all tools in use, as well as the ways in which the
traces are compared.

5.1.1 Software Setup

Simulation is used to validate the BTF traces obtained from hardware
via tracing and transformation. It allows analyzing of embedded real-time
systems by generating an event trace. A simulation is easy to configure
and executable without hardware. This is an advantage in the early design
stages of an application when the final target platform is not yet defined.

Advanced simulation tools allow it to take platform dependent timing
behavior into account. It is possible to select the OS and processor platform
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Figure 5.1: The general idea for the validation of the software event to BTF event
mapping. A model that represents a certain system is created. Based on the model,
a simulation, and a hardware trace are generated. By comparing those traces errors
in the transformation process can be detected.

RTE Model

Hardware Model OS Model Software Model

Figure 5.2: A RTE model consists of a hardware, an OS and a software part.

in use. Therefore, more accurate simulation results can be achieved. For
example, memory access times [19] and timing overheads caused by OS
service routines [20] can be taken into consideration.

Timing-Architects Embedded Systems GmbH provides the simulation
software used for validation [56]. The TA Simulator is based on a discrete-
event system simulation approach [8, 7]. It has already been used success-
fully in research projects to evaluate scheduling algorithms in multi-core
systems [9], to examine synchronization protocols [3], and to validate opti-
mization algorithms for embedded applications [48]. In this thesis version
15.02.1 of the TA Simulator is in use.

Software Model

Processes Runnables Signals OS Events Stimuli

Figure 5.3: The software model represents the entities of an application that are
executed by the OS and the hardware.
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Application

Task Task

Runnable Runnable

Instructionblock Signal Read Instructionblock Signal Write

ActivateTaskTerminateTask

Task

Figure 5.4: The software model allows it to represent the runtime behavior of an
application. All relevant software entities are part of the system model and stand
in relation to each other. For example, a task can call a runnable which itself
writes a signal value and runs for a certain amount of processor instructions which
is represented by an instruction block.

Timing Models describe the architecture and timing of an embed-
ded system. Model based development is a software development paradigm
where the design of an application is created in form of a timing model.
This can be done before the actual application software is implemented.
Based on the timing model requirements and constraints can be specified
and validated via simulation.

Timing models can provide different levels of granularity depending on
the use case. TA uses the Real Time Evaluation (RTE) model format which
consists of three parts as shown in Figure 5.2.

The hardware model includes the processor with all cores, quartzes, and
memory modules. Quartzes are used as a clock source for cores and memory
modules. Memory modules can be connected with each other and to the
processor cores to represent the architecture of the real chip. Vendor specific
hardware models are available for certain processor families for example, the
Infineon Aurix and the Freescale Matterhorn.

The OS model defines the scheduling policy for an application as well
as OS related timing overheads. Implementation of service routines varies
depending on the OS vendor. Consequently, the timing overhead resulting
from this routines is also different which makes it necessary to take their
runtime into account in order to get more accurate simulation results. Ven-
dor specific OS models are available for certain OSs for example, Elektrobit
Autocore OS [11].

The software model represents how hardware and OS are used by an
application. Hardware and OS model remain the same for all tests and
only the software part is changed depending on the different test scenarios.
Figure 5.3 depicts the system entities that are part of the software model.
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Processes and runnables are ordered in a hierarchical structure as shown
in Figure 5.4. Processes can call system routines and runnables, while
runnables can access signals, request, and release semaphores and execute
instruction blocks. The latter represents a certain number of clock cycles
required to execute a code section. It is required to mimic the runtime
behavior of a real application. The number of instructions taken by an in-
struction block can be configured to be static or to vary depending on a
specific distribution, e.g., Weibull distribution.

Stimuli are used to activate process entities. Similar to alarms they can
activate processes periodically or only once. Additionally, it is possible to
trigger stimuli to represent more complex activation patterns for example,
arrival curves. Since runtime and activation patterns based on random dis-
tributions are tough to represent in C code instruction blocks and stimuli
with constant values are used for the test models.

Code Generation is used to create C code based on the timing model
of an application. A template based model export was specified and imple-
mented in the context of this thesis. The solution is already in production
and allows it to create C code and the corresponding OIL files automatically.

The idea is to iterate over all software entities and create the appropriate
code dependent on the entity type. Transformation of most model entities
is straightforward. Runnable calls map to function calls in C. A signal read
access occurs if one signal is assigned to another variable. Accordingly, a
write access is represented by assigning a value to a signal. Task, event, and
semaphore actions are created based on the respective OSEK/VDX service
routines discussed in section 2.1.

An instruction block is the only software model entity that cannot be
mapped to C code straightforwardly. As discussed before, an instruction
block represents a certain amount of clock cycles required to execute a code
section. Normally, this value is set based on measurement results or em-
pirical values from other applications. For code generation it is necessary
to create code whose execution takes the same amount of clock cycles as
specified in the model.

The obvious way to do so is a for loop however, the exact code is de-
pendent on compiler and hardware. Listing 5.1 shows the code necessary
to get the desired behavior for the hardware used in this thesis. It works
because the Infineon Aurix processor family features zero overhead loops.
This means a for loop with one nop instruction takes exactly one clock cy-
cle because loop condition check, loop incrementation, and loop content are
executed in parallel.

It is important to add multiple nop instructions per loop cycle. The Au-
rix trace device implements a compressed program flow trace. This means
trace messages are only created for certain function events. Since the loop

assembly instructions is one of the commands that cause the creation of a
trace message, a loop with a single nop would cause the trace buffer to over-
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void execu t e In s t ruc t i on sCons t ( i n t c l o ckCyc l e s ) {
i n t i ;
c l o ckCyc l e s /= 2 ;
f o r ( i = 0 ; i < c l o ckCyc l e s ; i++) {

5 asm ( ”nop” ) ;
asm ( ”nop” ) ;

}
}

Listing 5.1: The function takes the specified amount of clock cycles to be executed.
This code is dependent on hardware and compiler in use and must therefore be
adapted to other platforms.

EE OPT = ”EE EXECUTE FROMRAM” ;
EE OPT = ”EE ICACHE ENABLED” ;
EE OPT = ”EE DCACHE ENABLED” ;
REMOTENOTIFICATION = USE RPC;

5 CFLAGS = ”−O2” ;
STATUS = EXTENDED;
ORTI SECTIONS = ALL;
KERNEL TYPE = ECC2;
COMPILER TYPE = GNU;

Listing 5.2: Subset of the EE OIL OS attributes used for validation. Attributes
that are not mentioned are set to the default value described in the EE RT-Druid
reference manual.

flow if the value of clockCycles exceeds a certain value. By adding additional
nop commands less trace messages are created per time unit and the function
events can be transmitted off-chip without overflowing.

ERIKA Enterprise Operating System is an OSEK/VDX compliant
real-time operating system. It is free of charge and open-source which makes
it an excellent choice for this thesis. Without access to the OS internal code
creation of many BTF events would not have been feasible. The EE software
packet contains the complete OS source code as well as RT-Druid, the code
generation tool to create OS specific source code from the OIL file. In this
thesis the ERIKA Enterprise Operating System and RT-Druid 2.4.0 release
is used.

Listing 5.2 shows the OIL attributes set for validation. All attributes
that are not mentioned take their default value as documented by the RT-
Druid reference manual [54]. The test applications are executed from RAM,
instruction and data caching is enabled, and the O2 optimization level is
configured. Inter-core communication is implemented via remote procedure
calls. All ORTI attributes and extended error codes are logged by the OS.
The configuration is created in a way that allows maximum traceability
combined with decent performance. Consequently, a similar configuration
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MCUDATA = TRICORE {
MODEL = TC27x ;

} ;
BOARDDATA = TRIBOARD TC2X5;

Listing 5.3: EE ECU config to support the Infineon TC27x microcontroller family
and the TC2X5 evaluation board. Source code changes are necessary to support
the hardware used in this thesis.

could also be used in a production system.
The Hightec Compiler [15] is used to compile the C code generated

by code generation and RT-Druid. It is based on GCC and EE generates
appropriate makefiles automatically if GNU is set as compiler. For the tests
Hightec Compiler v4.6.5.0 is used.

TRACE32 [17] is used as the hardware trace host software. Configu-
ration of this part of the test setup is the most complex. Different vendor
specific properties, like the number of processor observation blocks, must
be taken into consideration to create a setup that produces optimal results.
The used hardware and the corresponding configuration is discussed in the
next section.

5.1.2 Hardware Setup

An Infineon TriBoard TC298 evaluation board assembled with the In-
fineon SAK-TC298TF-128 microcontroller is used for evaluation. This
board provides an Infineon Multicore Debug Solution together with an Au-
rora Gigabit Interface. According to Table 3.1 and Table 3.3 this setup
allows for optimal trace performance.

EE provides support for the Infineon TC27x processor family which can
be activated in the OIL file as shown in Listing 5.3. TC27x and TC29x are
quite similar. Nevertheless, it is important to adapt the configuration to the
TC298TF processor. This is done by changing the includes in ./cpu/tricore/

inc/ee tc cpu.h from <tc27xa/Ifx reg.h> to <tc29xa/Ifx reg.h>. The layout of the
evaluation board is the same.

Based on MCU DATA EE configures the controller in the correct way
during system initialization. The OIL CPU CLOCK attribute can be used to
set the desired CPU frequency. The configuration done by EE is sufficient to
put the controller into a usable state. However, there are problems regarding
the frequency of the Multi-Core Debug System (fmcds). The TC298TF
can run at a frequency up to 300 MHz. EE does not configure the MCDS
clock divisor at all and consequently fmcds is equal to the system frequency.
However, the TC29xA user manual states that the maximum allowed value
for fmcds is 160 MHz [1].

Incorrect clock configuration may result in data and function events be-
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Figure 5.5: Correct clock settings are essential to record valid hardware traces
for the Infineon TC298TF microcontroller. The multi-core debug system frequency
must be lower or equal to 160 MHz and the ratio between CPU and MCDS frequency
must be 1 : 1.
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SYStem .CPU TC298TF
t ra c e . method . ana lyze r
t r a c e .mode . stream

5 mcds . source . cpumux0 . program on
mcds . source . cpumux0 . readaddr on
mcds . source . cpumux0 . wr i teaddr on
mcds . source . cpumux0 . wr i tedata on

10 break . s e t symbol . begin ( foo )−−symbol . end ( bar ) / r /w / tracedata

Go
wait 1 . s
break

15

p r i n t e r . f i l e t y p e csv
p r i n t e r . f i l e data . csv
winpr int . t r a c e . f i n d a l l , c y c l e r eadwr i t e / l i s t %t ime f i x ed \

t i . z e ro varsymbol c y c l e data
20

t r a c e . export . c sv func func . csv

Listing 5.4: Script to configure TRACE32 and the on-chip trace device. The setup
allows for continues function and data trace.

ing dropped randomly. According to the manual it is necessary to set the
fsystem to fmcds ratio to 2 : 1 to avoid this problem. Despite using the pro-
claimed configuration event dropping still occurred during the validation.
After consultation with the hardware experts from Lauterbach GmbH it
turned out that a ratio of 1 : 1 between system and MCDS clock is the only
way to guarantee the reception of all trace events. Thus, the EE clock con-
figuration must not be changed, but the system frequency must be smaller or
equal to 160 MHz. Figure 5.5 shows a configuration with a system frequency
of 100 MHz as used in this thesis.

The PowerTrace II by Lauterbach is used for trace recording. EE cre-
ates so called Lauterbach PRACTICE Scripts [16] also called cmm scripts
during the compilation process. These scripts can be used to operate the
TRACE32 software automatically. The generated scripts by EE are inade-
quate for the requirements in this thesis. Thus, it is necessary to improve
the scripts in a way that allows continues data and function trace as shown
in Listing 5.4.

Firstly, it is necessary to select the correct CPU (line 1). This is impor-
tant because otherwise the TRACE32 trace decoder is not able to interpret
the hardware trace events in the correct way. The trace method analyzer is
required for real-time tracing and trace mode stream means that the trace
data is sent to the host computer in a continuous way (lines 2 and 3).

Next, the processor and bus observation blocks are configured to detect
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all function and data events (lines 5-9). This is done via the multi-core
debug system. Setting the program attribute to on activates the function
trace. The other three attributes are necessary to record all data events.

A complete data trace may still overexert the bandwidth of the setup.
Via break.set filters as described in chapter 3 can be created (line 10). The
trace device is configured to record data read and write events for all vari-
ables in the memory range defined by symbol.begin(foo)−−symbol.end(bar). Here
foo is a variable that has a lower address than the variable bar. Using
the configuration described in this section, the compiler allocates the ar-
ray EE as rpc services table at the beginning of the OS memory section and
EE th status at the end. So those two variables provide a convenient boundary
to detect all OS data events of interest.

Trace recording is started via the Go command (lines 12-14). The wait

command waits for an eligible amount of time and recording is stopped by
the break command.

Now the data and function traces can be exported (lines 16-21). For the
data export it is first necessary to configure the desired output file type (csv)
and output filename (data.cvs). Via the winprint command the data export
process is started and trace .export.csvfunc exports the function trace.

TRACE32 creates multiple graphical user interfaces one for each core of
the target platform. Accordingly, the export commands must be executed
for each core or in other words for each GUI. The resulting files data.csv and
func.csv contain one event per line. The following listing shows a data event.

−0083448136 ,0.0004372600 , ”EE ORTI servicetrace ” , ”wr−data” ,43

A Lauterbach data event consists of five comma separated fields. In
Equation 4.1 the elements of a data event are defined. The second field
is the timestamp ti in seconds, the third field is the name of the accessed
variable πi, the fourth field specifies in which way ai the variable is accessed
(a data write in this case), and the fifth field contains the value of the data
access event vi. Since one trace data trace file is exported per core, the core
name ci is the same for all events from one file. Accordingly, the next listing
shows a Lauterbach function event consisting of three fields.

+437050; EE as StartCore ; f en t r y

In Equation 4.3 the elements of a function event are defined. Analogous
to data events, the core name cj is the same for all events within a file.
The first field maps to the timestamp tj , the second field is the name of the
function πj that is affected by the event, and the third field indicates the
way θj in which the function is affected.

5.1.3 Validation Techniques

Traces can differ in two ways. A temporal difference exits for two traces
B1 and B2 with the same length n if there is at least one event pair with
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the index i ∈ (1, 2, . . . , n) for which t1i 6= t2i . As discussed before, the
TA Simulator is capable of taking hardware and OS specific behavior into
account. Nevertheless, simulating a trace for which all timestamps are equal
to the corresponding hardware trace is not feasible by definition [6].

This problem is bypassed in two steps. At first the general accuracy of
the trace setup is validated by tracing events whose timing characteristics
are precisely known in advance. Secondly, for the actual test models, a
plausibility test based on certain metrics such as task activate-to-active and
task response time is conducted.

The second way in which two traces can differ is called semantic differ-
ence. It exists for two traces B1 and B2 with the same length n if there
is an event pair with the index i ∈ (1, 2, . . . , n) for that at least one of the
following cases is true: source or target entity differ (Ψ1

i 6= Ψ2
i ∨ T 1

i 6= T 2
i ),

source or target instance differ (ψ1
i 6= ψ2

i ∨ τ1i 6= τ2i ), target type differs
(ι1i 6= ι2i ), event action differs (α1

i 6= α2
i ), or note differs (ν1i 6= ν2i ).

If two traces B1 and B2 have a different length |B1| 6= |B2| they also
differ semantically. Assuming the trace and simulation setup is correct a
difference in length can have two reasons: either the trace times differ or
one trace includes entities that do not occur in the other trace. In the former
case, the disparity can be fixed by removing the events at the end of the
longer trace until both traces have the same length. In the latter case, events
for entities that are not contained in both traces may be removed in order
to achieve semantic equality.

5.2 Test Cases

As discussed in the previous section traces can differ in a temporal and
in a semantic way. To exclude the appearance of temporal discrepancies
due to a wrong trace setup, the timing accuracy is tested based on code
with known event-to-event durations. Next, the semantic correctness of the
trace mapping is validated based on manually created test models. Finally,
randomized models are generated in order to detect semantic errors that
may not be detected by the manually created models due to selection bias
[14].

5.2.1 Timing Precision

In Listing 5.1 code to execute a fixed number of instructions is introduced.
This code is now used to evaluate the timing precision of the trace setup.
According to section 3.2 the setup should allow for cycle accurate trace
measurement.

The Infineon Aurix processor family provides performance counters [1].
Once started, these counters are incremented based on the CPU core fre-
quency. A frequency of 100 MHz is used for the validation, consequently an
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EE UINT32 i ;
EE UINT32 ccntS ta r t ;
EE UINT32 ccntEnd ;

4 EE UINT32 n = N / 4 ;

asm ( ”nop” ) ;
c cn tS ta r t = EE tc get CCNT () ;
asm ( ”nop” ) ;

9 f o r ( i = 0 ; i < n ; i++) {%
asm ( ”nop” ) ;
asm ( ”nop” ) ;
asm ( ”nop” ) ;
asm ( ”nop” ) ;

14 }
asm ( ”nop” ) ;

ccntEnd = EE tc get CCNT () ;

Listing 5.5: Code to validate the timing precision of the trace setup.

increment occurs every 10 ns. The counter can be started at an arbitrary
point in time for example, at program start. By reading the counter value
at the beginning and at the end of a critical section the clock cycles that
expired between these two points can be determined.

Listing 5.5 shows the code that is used to check the timing precision.
EE provides the API function EE tc get CCNT to read out the performance
counter register. As described above, the performance counters are read out
before and after the critical section.

The critical section is guarded with two additional nop assembly instruc-
tion to avoid compiler optimization. Additionally, the generated assembly
code was examined manually to verify that no unwanted instructions were
added by the compiler. A for loop is used to execute a predefined number of
instructions. The number of repetitions is depended on the define N which
should be a multiple of four.

The code is now executed for different values of N. For each event the
expected number of clock cycles ce, the actual number of clock cycles ca, the
expected time difference te in nanoseconds, and the actual time difference
ta in nanoseconds between the writes to ccntStart and ccntEnd are listed in
Table 5.1.

The expected number of clock cycles is calculated by ce = N + 2. The
value two is added because of the additional nop instructions. The expected
time is calculated by te = ce ∗ 1

f where f is the processor frequency.
The actual number of clock cycles is calculated by ca = ccntEnd −

ccntStart. The actual time is calculated by ta = tj − ti where j is the index
of the write event to ccntEnd and i is the index of the write event to ccntStart.

Four different values for N, 128, 1024, 4096, and 65536 are chosen and for
each value 101 measurement samples are taken. The results for all samples
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N 128 1024 4096 65536

ce [1] 130 1026 4098 65538
ca [1] 134 1030 4102 65542
te [us] 1.300 10.260 40.980 655.380
ta [us] 1.340 10.300 41.020 655.420

samples 101 101 101 101

Table 5.1: Experiment to validate the accuracy of the trace setup. A code snippet
that takes a known number of instructions ce is executed. Based on the number
of instructions the expected execution time te can be calculated. If cycle accurate
measurement is supported, the actual execution time ta should be equal to te. The
execution times differ by 40 ns because the expected number of instructions is off
by four cycles. If this deviation is taken into consideration te and ta coincide.

with the same value of N are equal. It can be observed that for all values of N
the execution of the critical section takes four ticks more than the expected
value ec. This is because the additional instruction executed by the second
call to EE tc get CCNT are not taken into consideration.

Consequently, the expected and the actual execution time differ by 40 ns.
Besides this differences, the result is as expected and the conclusion that the
setup is in fact able to measure hardware events on a cycle accurate basis
can be drawn.

5.2.2 Systematic Tests

In this section test models are created systematically to validate the com-
plete software to BTF event mapping discussed in chapter 4. For each test
application a simulated and a hardware based BTF trace is generated as
shown in Figure 5.1. The traces are then compared in three steps.

• A basic plausibility test based on the Gantt chart of the TA Tool Suite
is conducted.

• The semantic equality is validated.

• Different real-time metrics are compared and discussed.

Five test models as shown in the following list are required to cover all
BTF actions for which a mapping has been provided.

• task-runnable-signal

• task-event

• task-resource-release-parking

• task-resource-poll-parking
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Figure 5.6: Test application to validate basic task and signal read and write events.

• task-MTA

Each model represents a periodic system where a defined sequence of
events is executed every 10 ms. UML sequence diagrams [13] are used to
illustrate the behavior of the test applications during one period.

Task-Runnable-Signal Test

The task-runnable-signal application is depicted in Figure 5.16. Task T 1

is activated periodically by the stimulus STI T 1 every 10 ms. T 1 activates
T 2 on another core via IPA and then executes runnable R 1. T 2 executes
a runnable R 2 1 which executes another runnable R 2 2. Once execution of
R 1 has finished, T 1 activates another task T 3 on the second core which has
a higher priority then T 2. Consequently, T 2, R 2 1, and R 2 2 are preempted
as indicated by the light green and light blue colors. T 3 calls a runnable
R 3. The runnables R 1 and R 3 both read and write the signal SIG 1. Once
T 3 has terminate, T 2 and the corresponding runnables resume execution.
The purpose of this test application is to cover the following BTF actions:

• Stimulus: trigger by alarm and IPA

• Task: activate, start, preempt, resume, terminate

• ISR: activate, start, terminate

• Runnable: start, resume, suspend, terminate

• Signal: read, write
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Figure 5.7: Hardware and software trace for the task-runnable-signal test model.
Attention must be directed to the signal read and write accesses to SIG 1. Addi-
tionally, the nested runnables must be suspended when the respective task T 2 is
preempted.
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Based on the Gantt chart of the TA Tool Suite the BTF trace can be
compared visually. The hardware trace is shown in the upper part and the
simulated trace in the lower part of each picture. Both traces use the same
time scale so that semantic and temporal comparison is feasible.

Figure 5.7 shows one period of the task-runnable-signal test application
in the Gantt chart of the TA Tool Suite. The figure depicts that R 2 2 is
called from the context of R 2 1. When T 2 is preempted, both runnables
must be suspended too, indicated by the light blue color in contrast to the
stronger blue when a runnable is running. Runnable entities are not shown
in the traces for the other test models for clarity. A running task is colored
in dark green, while preempted tasks are shown in light green.

A separate row in the Gantt chart is used to depict signal accesses from
the context of tasks. Whenever a horizontal line is drawn the corresponding
signal is read or written. The former is indicated by an arrow pointing up
at the bottom of the row. The latter is indicated by an arrow pointing down
at the top of the row. It can be seen that the signal accesses are recorded
on hardware as expected.

The hardware trace shows two additional ISRs that are not part of
the simulation trace. EE tc system timer handler is a timer interrupt which
is executed every 1 ms and serves as clock source for the system counter.
EE TC iirq handler is used for remote procedure calls.

Two traces can not be semantically identical if entities exist in one trace
that are not part of the other trace. There are two ways two solve this
problem. Either the ISRs are added to the system model and therefore con-
sidered during simulation or all BTF events related to the ISRs are removed
from the hardware trace.

A script that checks the semantic equality of two traces based on the
criteria established in subsection 5.1.3 is used for the second validation step.
However, semantic equality could not be shown for the test cases in this and
the next section. The reason for this is discussed in subsection 5.2.3.

The TA Inspector is capable of calculating a variety of real-time metrics
based on BTF traces. Selected metrics are shown to discuss the similarities
and discrepancies between hardware and simulation trace. Common metric
types are activate-to-activate (A2A), response time (RT), net execution time
(NET), and CPU core load. The upper part of each metric table shows the
hardware trace metrics abbreviated by HW and the lower part shows the
simulation trace metrics abbreviated by Sim.

Table 5.2 shows selected real-time metrics for the task-runnable-signal
application. In the first approximation all values seem identical so the basic
configuration of the complete setup is likely to be correct. Nevertheless, the
activate-to-activate times between hardware and simulation differ by almost
6 us which is non-negligible.

The reason for this deviation can be found by examining the activate-to-
activate times of the timer ISR EE tc system timer handler. The average A2A
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A2A [ms] RT [ms] Load Core 1 [%] Load Core 2 [%]

T 1 10.005998 3.025510 30.124423 0.000000
HW T 2 10.005990 6.516440 0.000000 49.950032

T 3 10.005987 1.506300 0.000000 15.000495

Sum - - 30.12 64.95

T 1 10.000000 3.000100 30.000000 0.000000
Sim T 2 10.000000 6.500200 0.000000 50.000000

T 3 10.000000 1.500100 0.000000 15.000000

Sum - - 30.00 65.00

Table 5.2: Metrics of the task-runnable-signal test application. Activation-to-
activation (A2A) and response time (RT) are average values calculated over all
instances of the respective entity.

time for the ISR is 600 ns greater than expected. Since T 1 is activated
every 10 ms or in other words for every tenth instance of the timer ISR, the
expected deviation can be calculated as dA2A = 10 · 600ns = 6us.

To detect why the A2A times of the timer ISR diverge, it is necessary to
read the corresponding source code. Whenever the timer ISR is executed the
time delta to the next instance is calculated based on the current number
of counter ticks in the timer register. There is a time delta between the
point where the last counter ticks value is read and the point where the
newly calculated value is written. This is the delta that causes the delay
of 600 ns. By doubling the frequency the delta reduces to 300 ns by halving
the frequency it increases to 1200 ns as expected.

Task-Event Test

Figure 5.8 shows the task-event test case. T 1 is activated in the same way
as in the first test case. Again, it activates T 2 on a second core via IPA. T 2

executes a runnable R 2. After execution of the runnable T 2 waits for the
event EVENT 1. Since the event is not set it changes into the waiting state
indicated by the orange color. After activating T 2, T 1 executes a runnable
R 1 and sets the event EVENT 1. T 2 returns from the waiting state, calls R 2

again, and clears the event EVENT 1. The purpose of this test application is
to cover the following BTF actions:

• Process: wait, release

• Event: wait event, set event, clear event

Figure 5.9 shows the Gantt chart for the task-event test case. As before
T 1 is interrupted by the timer ISR multiple times. A separate row in the
Gantt chart is used to indicate the current state of the event entity. An
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Figure 5.8: Test application to validate BTF event actions.

Figure 5.9: Comparison of hardware (top) and simulated (bottom) trace of the task
event test application.
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A2A [ms] RT [ms] CPU Waiting Core 2 [%]

HW T 1 10.006198 2.023460 0.000000
T 2 10.006189 3.018570 10.046955

Sim T 1 10.000000 2.000100 0.000000
T 2 10.000000 3.000100 9.999000

Table 5.3: Metrics of the task-event test application.

upward pointing arrow indicates that a process starts waiting for an event.
The waiting period is colored in orange. A downward pointing arrow in-
dicates that a process sets an event. Finally, the event is cleared which is
indicated by an downward pointing arrow in red.

Table 5.3 shows the resulting metrics for the task-event test case. The
activate-to-activate times depict the same behavior like the previous test
application as expected. The relative waiting time on hardware is greater
than it is for the simulated trace.

A possible reason might be the longer runtime of the set event routine
on-target. The task on core Core 1 sets the event for the task on the second
core. Therefore, a Remote Procedure Call is necessary to set the event.
Since the RPC via EE TC iirq handler is not taken into consideration in the
simulation, the time in the waiting state is longer on hardware.

Response times are also significantly longer on real hardware compared
to the simulated trace. The response time measures the period from task
activation to termination of a task instance. The difference in response time
sums up from different factors.

Firstly, the initial ready time, i.e. the period from task activation to start
is longer on hardware. It takes about 2 us. Secondly, T 1 is preempted by
the timer ISR two times. Category two ISRs require a context switch which
costs additional task execution time. Finally, the IPA and TaskTerminate

routines take longer on real hardware. By measuring the execution times of
the respective system services it could be shown that the response times are
equal if the measured overhead is taken into consideration. As mentioned
before, these effects could be respected for the simulation by adding the
execution times of the routines to the OS part of the timing model.

Task-Resource Tests

The third and fourth test case are similar except for one difference as shown
in Figure 5.10 and Figure 5.11. As before, T 1 is activated by a periodic
stimulus and activates T 2 on another core via IPA. T 1 executes the runnable
R 1 1 which requests the semaphore SEM 1. T 2 tries to request the same
semaphore which is now locked and changes into the active polling state
indicated by the red color. As soon as R 1 1 finishes, T 1 activates the task
T 3 which has a higher priority than T 2, on the second core. Consequently,
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Figure 5.10: Test application to validate semaphore events, especially the
poll parking action.

Figure 5.11: Test application to validate semaphore events, especially the re-
lease parking action.
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Figure 5.12: Comparison of hardware (top) and simulated (bottom) trace of the
task-resource-poll-parking test application.

RT [ms] Polling Time [ms] Parking Time [ms]

T 1 2.524897 0.000000 0.000000
HW T 2 3.269190 0.751730 0.508011

T 3 0.506321 0.000000 0.000000

T 1 2.500140 0.000000 0.000000
Sim T 2 3.250040 0.749800 0.500100

T 3 0.500100 0.000000 0.000000

Table 5.4: Metrics of the task-resource-poll-parking test application.

T 2 is deallocated and changed into the parking state.
At this point the two models differ. In first model task-resource-poll-

parking T 3 has a shorter execution time than in the model task-resource-
release-parking. Consequently, in the former model T 2 is resumed while
SEM 1 is still locked and a poll parking action takes place.

In the latter case when T 3 has a longer execution time, SEM 1 becomes
free while T 2 is still preempted. This results in a release parking action and
T 2 changes into the ready state. Once T 3 has terminated T 2 continues
running immediately. The purpose of these applications is it to test the
following actions.

• Process: park, poll parking, release parking, poll, run

• Semaphore: ready, lock, unlock, full, overfull

• Process-Semaphore: requestsemaphore, assigned, waiting, released

Figure 5.12 and Figure 5.13 show the comparison of the traces for the
two resource test applications. For both test cases T 1 requests SEM 1 as
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Figure 5.13: Comparison of hardware (top) and simulated (bottom) trace of the
task-resource-release-parking test application.

A2A [ms] RT [ms] CPU Parking Core 2 [%]

T 1 10.005997 2.026420 0.000000
HW T 2 10.005989 2.772670 4.984965

T 3 10.005984 0.756450 0.000000

T 1 10.000000 2.000140 0.000000
Sim T 2 10.000000 2.750240 4.949010

T 3 10.000000 0.750100 0.000000

Table 5.5: Metrics of the task-resource-release-parking test application.
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Figure 5.14: Test application to validate mtalimitexceeded events.

indicated by an upward pointing arrow. The semaphore is now locked and
T 2 changes into the polling mode when requesting it. This is indicated by
the yellow color. Once T 3 is activated T 2 changes into the parking mode
indicated by the orange color.

In Figure 5.12 T 3 has a runtime of 500 us and resumes running before
the semaphore is released. Thus, it returns into the polling state until the
semaphore is released. The release event is depicted by a downward point-
ing arrow. In Figure 5.13 the execution time is longer and T 1 releases
the semaphore earlier. Consequently, SEM 1 becomes free while T 2 is still
deallocated from the core and changes into the ready state.

For both resource test applications the BTF traces recorded from hard-
ware match the simulated traces as shown in the previous figures. The
metrics in Table 5.4 and Table 5.5 show similar results compared to the
previous tables and are therefore not discussed again.

Task-MTA Test

The purpose of the last specified test application is to validate the correct-
ness of MTA and mtalimitexceeded events. Figure 5.14 shows the sequence
diagram of the respective test model. In this example T 2 is allowed to have
two activations. This means two instances of the task may be active in the
system at the same point in time.

Like in the previous tests T 1 is activated by STI T 1 periodically. T 1

then activates T 2 three consecutive times via inter-core IPA. The runnable
R 1 is executed to consume some time between the activations. After the
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Figure 5.15: Comparison of hardware (top) and simulated (bottom) trace of the
task-MTA test application.

first activation the task starts running as expected. The second activation is
stored by the OS. Once T 2 terminates, it changes into the ready state and
starts running again. The third activation is not allowed by the OS as indi-
cated by the red box. An error message is created and a mtalimitexceeded
event must be added to the BTF trace.

Figure 5.15 shows the comparison of the BTF traces created by simula-
tion and from hardware for the task-MTA test model. The hardware traces
illustrates the procedure for an inter-core process activation really well. At
first the activation is triggered on Core 1 as shown in the row IPA T 1. This re-
sults in the execution of the inter-core communication ISR EE TC iirq handler.

The ISR then activates T 2 which changes into the ready state indicated
by the gray color. During the second activation T 2 is already in the run-
ning state. Consequently, the activation is only illustrated by a downward
pointing arrow. In the simulated trace the task keeps running during the
activation process. In the hardware trace the task is preempted by the
inter-core ISR and the activation takes place while the task is in the ready
state.

During the third activation two instances of T 2 are already active in the
system. Thus, no further activations are allowed and a mtalimitexceeded
event is created. This is indicated by a downward pointing red arrow. At
around 81925 us the first instance of T 2 terminates and the next instances
becomes ready immediately. Shortly after that the next instance starts
running.

5.2.3 Randomized Tests

Randomized tests are used to avoid insufficient test coverage due to selection
bias in the creation of the test applications. A tool for generating random
models automatically with respect to predefined constraints has been devel-
oped in previous research projects [47]. It allows the creation of an arbitrary
number of test models and works with respect to user-defined distributions
for example, for the number of cores, tasks, and runnables. Based on these
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Entities min max average distrbution

Cores [1] 2 - - const
Tasks [1] 9 22 15 weibull

Runnables/Task [1] 6 13 - uniform
Instructions/Runnable [103] 10 50 30 weibull

Activation [ms] 1 20 1000 weibull
Signals [1] 3 11 17 weibull

Signals/Runnable [1] 3 7 - uniform

Table 5.6: The configuration used for creating test models randomly.

Figure 5.16: Semantic comparison of multi-core systems is not feasible if the exe-
cution time of service routines varies between hardware and simulation.

values models can be generated randomly.
Table 5.6 shows the distributions for the number of entities that should

be created for each entity type. This configuration is used for each of the ten
models that are tested in this section. The distributions for cores and tasks
represent the number of entities of the respective type in the system. The
metric runnables per task determines how many runnables are called from
the context of each task. Each task is activated by a periodic stimulus with
a period depending on the activation value. Signals specifies the number of
signal entities in the system and signals per runnable the accesses to these
signals within the context of each runnable. Event and resource entities
cannot be generated by the random model generator and are therefore not
covered by randomized tests.

Validating these models manually is not feasible. Therefore, only the
semantic equality is tested because this can be done without user interac-
tion. In previous work a closed loop model based development process was
created to conduct the proceeding shown in Figure 5.1 automatically [32].
This process was extended to support the model generator and semantic
comparison of two traces.
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As mentioned before semantic equality could not be shown for any of the
test applications. The reason for this is depicted in Figure 5.16. Assuming
that one task activates another task on a different core and executes multiple
other actions afterwards. The position in which the start event of the second
task is added depends on the time that vanishes between activation and
start. This means two traces may be semantically different even though they
show the same behavior. Consequently, the definition of semantic equality
used in this thesis is not sufficient for the comparison of multi-core systems.
Nevertheless, by randomized comparison of the traces the correctness of the
mappings could be validated manually. However, this fallback solution is
not sufficient for validating a wide range of test cases.
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6 Conclusion

Cycle Accurate Tracing

Hypothesis 1 asks whether there is a trace technique capable of recording
cycle accurate traces with a duration of at least one second. There exists
three general measurement techniques. Hybrid and software based trace
tools rely on instrumentation. Thus, they change the runtime behavior of
an application and do not allow cycle accurate trace recording.

Additionally, an on-chip memory to buffer the recorded trace events is
required. Hence, the trace duration is strongly limited by the available
memory. An application with 28 tasks can only be traced for 350 ms using
the Gliwa T1 hybrid trace tool [26] providing events solely on task level.
Runnables were not even considered.

Hardware tracing is the only trace technique that allows cycle accurate
traces with a duration of at least one second. Actually, durations of over
ten seconds are possible with the correct hardware configuration.

However, there are certain limitations for the hardware platform used
in this thesis. Depending on the clock configuration not all data events are
recorded. This can be avoided by using a CPU core clock frequency smaller
or equal than 160 MHz. Therefore, Hypothesis 1 is true.

ORTI Based Software to System Mapping

Hardware trace tools create traces on software level. This level is not suffi-
cient for the real-time analysis of embedded systems. A transformation from
software to system level is therefore required. ORTI was designed to give
third party tools additional information for the trace recording of applica-
tions that use an OSEK/VDX compliant OS. Hypothesis 2 asks if ORTI is
sufficient to create a complete mapping from software to system level.

It has been shown that ORTI can be used to cover only a subset of the OS
entity types specified in the BTF standard. Even for those entities covered
by ORTI no complete mapping is feasible. For example, information about
task entities is included in the ORTI file, but it is not feasible to determine
the source entity for a mtalimitexceeded event. Consequently, Hypothesis 2
does not hold.

However, it should be noted that ORTI allows it to specify OS vendor
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specific attributes. This means in case a mapping is basically possible as
claimed by Hypothesis 3 then it would be possible to include the required
information in the ORTI file.

Nevertheless, to the best of my knowledge this thesis is the first work
to show that BTF trigger actions and all process actions except mtalimitex-
ceeded can be created based on the ORTI sections specified by OSEK/VDX.

Software to System Mapping

No complete mapping from software to system entities is feasible by relying
solely on the information in the ORTI file. Additional information is required
to achieve a complete mapping. On the one hand a detailed understanding
of the OS internals is required, on the other hand meta information must
be provided to the transformation algorithm.

The concept of runnables and signals is not specified by OSEK/VDX.
Basically, runnables are functions and signals are variables. It is possible to
create runnable and signal events via function and data tracing. A list of
all entities is required to distinguish regular functions from runnables and
regular variables from signals.

To create BTF events for the event entity type it is necessary to un-
derstand the respective code of the OS. By parsing the statically created C
header files the event IDs can be retrieved and the correct events can be
created.

Semaphore events are the most complex entity types to reconstruct via
hardware tracing. BTF supports all possible types of semaphore like syn-
chronization mechanisms. Hence, a variety of different actions are specified.
A possible mapping for OSEK/VDX resource entities is nevertheless pro-
vided in this thesis.

To the best of my knowledge this is the first work to show that all BTF
signal, runnable, event, and semaphore actions can be recreated from an
OSEK/VDX compliant OS. Therefore, Hypothesis 3 is true.
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7 Future Work

Improve Trace Interface Standard

It has been shown that a complete software to system mapping is possible
for an OSEK OS and should accordingly also be possible for an AUTOSAR
OS. However, detailed knowledge of the OS is required to understand and
implement this mapping. OSEK/VDX tries to minimize this effort via the
ORTI trace interface. Unfortunately, this interface is only regulated for a
subset of all OS entity types.

Some entities like spinlocks, semaphores, and inter-process communica-
tion techniques like AUTOSAR sender-receiver-communication are not cov-
ered at all. In theory OSEK/VDX allows it to add additional attributes to
the ORTI file, but this option is currently not comprehensively used by the
OS vendors. To solve this problem further efforts to reach a common trace
interface standard for all AUTOSAR system entities should be made.

Evaluate Different Hardware Platforms

In this thesis the feasibility of recording cycle accurate hardware traces was
validated for the Infineon Aurix TriCore processor family using the Infineon
Multi-Core Debug System. As described in section 3.2 there exists different
trace standards for other processor families.

In order to achieve a better understanding of the trace capabilities of var-
ious hardware platforms different other processor families should be tested in
the future. It has been shown that cycle accurate recording of data events on
the Infineon TC298TF processor is only feasible for certain clock settings.
It would be interesting to know if similar constraints also exist for other
platforms.

Evaluate Different Operating Systems

ERIKA Enterprise Operating System is used as a representative for an OS-
EK/VDX compliant OS in this thesis. It is a sufficient choice because of the
available source code and the permissive license. For EE, it could be shown
that a mapping from software to system entities is feasible.

However, OSEK/VDX has been taken over from AUTOSAR. Since AU-
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TOSAR is a superset of OSEK/VDX the reasoning for most system entities
is legitimate for both OS standards. Nevertheless, AUTOSAR introduces
new synchronization patterns (of which some have been adopted by EE)
and it would be interesting to know if a mapping is possible for those new
techniques as well.

Additionally, a complete mapping could only be created because the
source code of EE is freely available. It would be interesting to know if
the same approach is feasible for a commercial OS that does not make its
source code available. This is an important question to answer since the
automotive industry relies predominantly on commercial OSs.

Validate Mapping With Real World Applications

Finally, the feasibility of the software to system mapping has been shown
and validated for several test applications. One part of those applications
was created manually to cover specific test cases, the other part was created
randomly. However, all test applications have in common that they do
not execute real functionality. Instead, dummy instructions are used to
simulate runtime that would emerge on real hardware due the computation
of algorithms and feedback loops.

It may be possible that the trace capability of the tested hardware is
limited for real applications. If this is the case the mapping introduced in this
thesis may not be completely applied in the real world for example because
the bandwidth for recording OS data events is limited. To investigate this
question industrial case studies should be conducted based on the approaches
discussed in this thesis.

Trace a Multi-ECU Setup

In many environments microcontrollers operate in big networks. For ex-
ample, in modern cars up to 70 ECUs are installed and connected via at
least five different field bus systems [20]. In such systems correct system
performance is not only dependent on the behavior of a single controller,
but also on the interaction of the system as a whole. The ability to trace
multiple ECUs in parallel would provided enormous benefits in the analysis
and validation of multi-ECU systems.

In order to get meaningful results from the analysis of a multi-ECU trace
it is mandatory that the timestamps from all ECUs are synchronous. Other-
wise, the delay between different processor would result in wrong evaluation
metrics and no valid conclusions could be drawn. Therefore, the feasibility
of a multi-ECU trace environment is an interesting and important topic for
future work.
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